
On a Routing and Scheduling Problem Concerning
Multiple Edge Traversals in Graphs

G. W. Groves
Department of Industrial Engineering, University of Stellenbosch, Private Bag X1,
Matieland 7602, South Africa

J. le Roux
Department of Quantitative Management, University of South Africa, PO Box 392, UNISA, 0003, South Africa

J. H. van Vuuren
Department of Applied Mathematics, University of Stellenbosch, Private Bag X1,
Matieland 7602, South Africa

Practical vehicle routing problems generally have both
routing and scheduling aspects to consider. However,
few heuristic methods exist that address both these com-
plicated aspects simultaneously. We present heuristics
to determine an efficient circular traversal of a weighted
graph that requires a subset of its edges to be traversed,
each a specified (potentially different) number of times.
Consecutive time instances at which the same edge has
to be traversed should additionally be spaced through a
scheduling time window as evenly as possible, thus intro-
ducing a scheduling consideration to the problem. We
present a route construction heuristic for the problem,
based on well–known graph theoretic algorithms, as well
as a route improvement heuristic, that accepts the solu-
tion generated by the construction heuristic as input and
attempts to improve it in an iterative fashion. We apply
the heuristics to various randomly generated problem
instances, and interpret these test results. © 2005 Wiley
Periodicals, Inc. NETWORKS, Vol. 46(2), 69–81 2005

Keywords: arc routing problems; network routing; chinese post-
man problem; rural postman problem

1. INTRODUCTION

Consider a weighted graph G = (V , E), with vertex set
V = {v1, . . . , vp}, edge set E, and edge weights denoted

Received January 2003; accepted April 2005
Correspondence to: J.H. van Vuuren; e-mail: vuuren@san.ac.za
Contract grant sponsor: South African National Research Foundation; Con-
tract grant number: GUN2053755
Contract grant sponsor: Research Subcommittee B (university of stellen
bosch)
DOI 10.1002/net.20073
Published online in Wiley InterScience (www.interscience.wiley.
com).
© 2005 Wiley Periodicals, Inc.

c(i, j) ∈ R
+ for all vivj ∈ E. The well–known Chinese Post-

man Problem (CPP) [28] is the problem of determining a
minimum–weight circuit traversing each edge vivj ∈ E at
least once. The CPP is tractable and may be solved in O(|V |3)
time [13]. The Rural Postman Problem (RPP) is a general-
ization of the CPP in which a minimum–weight circuit is
sought, traversing each edge in a subset R ⊆ E at least once.
The RPP is NP–Hard [31], except when R = E, in which case
the problem reduces to the CPP. The problem definitions of
the CPP and RPP have been generalized extensively, and pro-
cedures catering for directed and mixed graphs, for example,
have been introduced. See Dror [12], Eiselt et al. [16, 17],
and Ball et al. [2] for an overview.

Problems, such as those mentioned above, where visiting
requirements are placed on the edges, or arcs, of a graph are
known as arc routing problems (ARPs). They stand in con-
trast to vertex routing problems, where visiting requirements
are placed on the vertices of a graph. Practical applications of
ARPs include bus routing [1, 4, 5, 8, 10], meter reading [38,
40], control of plotting and drilling machines [24], optimiza-
tion of laser–plotter beam movements [22], mail delivery [32,
37], garbage collection [3, 6, 21], street sweeping [7, 15], and
snow gritting [14].

In this article we consider a problem that is a natural gener-
alization of the RPP in the sense that we still seek to minimize
the total circuit weight. However, (1) we no longer require
each edge in the circuit to be traversed at least once, but rather
require that each edge should be traversed at least a prespec-
ified (potentially different) number of times and that (2) the
time instances or positions within the circuit at which con-
secutive traversals of the same edge occur, should be spread
over the whole circuit as evenly as possible, for all edges.
This problem therefore has both a circuit cost and a spread
objective, and these are typically conflicting, in the sense

NETWORKS—2005

that one might intuitively attempt to traverse an edge in the
graph a sufficient number of times while one finds oneself
in the vicinity of that edge, in a bid to minimize the total
circuit weight. However, this would result in a solution with
a bad spread. Conversely, separated consecutive traversals
of the same edge over the circuit would typically increase
the total circuit weight, due to an increased amount of free–
running (which we shall call passive traversals) to reach edges
that have to be traversed (actively) at an appropriate time or
position within the circuit, thereby resulting in a bad circuit
routing (cost). This problem has many potential applications,
including:

1. Servicing of transportation networks, such as railway sys-
tems (consisting of metro rails, freight links, long distance
lines, etc.) or road networks (consisting of suburban roads,
dirt roads, highways, etc.). Maintenance of such networks
typically requires routine servicing of each of their links.
However, the service frequency of links in the network
might vary with the link type. For example, it may be
necessary to service dirt roads four times annually, while
highways might only require servicing once a year. These
service frequencies may be prescribed by law or by service
company policy.

2. Snow ploughing or garbage removal in cities where cer-
tain locations need more frequent service than others. For
example, it might be necessary to collect garbage more
regularly from industrial sites than from residential ones,
or busy main roads may need more frequent snow sweep-
ing than quiet rural ones. These service frequencies are
usually dictated by practical considerations.

The above-mentioned scheduling and routing problem is
described generically in section 2, after which a nonlinear
binary programming formulation is introduced, for solving
a specific version of the problem, in section 3. However, the
time complexities of standard solution techniques for binary
programming problems may prohibit us from solving large
problem graphs. A more focussed problem formulation, with
a definition for spread more suited to practical problems, is
introduced in section 4, and a simple construction heuristic
is introduced for that problem in section 5. A local search
heuristic is then presented in section 6, which may be used
to improve the solution found by the heuristic in section 5.
We present a number of test results in section 7 on randomly
generated graphs within different graph structure classes. The
graph instances that were used to obtain these test results
are also available as benchmarks on the internet. Finally,
we conclude the article, in section 8, by commenting on the
efficiency of our solution procedure and by reflecting upon
possible improvements.

2. PROBLEM DESCRIPTION

The problem under consideration may be described as an
RPP with additional spread requirements, in the following
manner:

Consider a weighted, order p graph G, with vertex set
V(G) = {v1, . . . , vp} and edge set E(G). Denote the

weights associated with the edge vivj of G by the tuple
(c(i, j), f (i, j)), where c(i, j) is referred to as the cost weight
and f (i, j) the frequency weight. We seek a closed route
R that traverses each edge of G at least f (i, j) times (each
of these minimum number of traversals are called active
traversals, while other traversals are called passive traver-
sals). The sum of the cost weights of the edges in R must
be as small as possible, while simultaneously ensuring
that the active traversals of the same edges are separated
from each other in R (this separation is called spread) in
accordance to some defined criterion, for all edges in the
graph.

It is clear from this description that, practically, the prob-
lem under consideration may be defined in many forms,
depending on the criterion used for the spread objective and
the manner in which the goal of optimizing the two objectives
is treated. In the next section, a mathematical programming
formulation is introduced, in which spread is measured in
terms of the number of active traversals separating traversals
of the same edge. This measure of spread is considered to
be inadequate in practical situations, and therefore, a new
version of the problem is defined in section 4, measuring
spread in terms of temporal deviation within a specified time
window.

3. MATHEMATICAL PROGRAMMING
FORMULATION

Denote a solution to our generalisation of the RPP as a
sequence S = 〈(vs1 , vt1), (vs2 , vt2), . . . , (vsn , vtn)〉 of actively
traversed edges in the order in which they are traversed.
Passive traversals are omitted from the sequence and are
assumed to take place along routes corresponding to short-
est distances between the edges of the sequence. Define the
decision variables

xk
ij =

1 if vivj is the kth entry of S,
i.e. if vi = vsk and vj = vtk

0 otherwise

for all k = 1, . . . , n and all i, j = 1, . . . , p, where

n =
∑

vivj∈E(G)

f (i, j)

denotes the length of the sequence S. Then we attempt to
construct a sequence S, which minimizes the routing cost
objective

R(S) =
n∑

k=1

p∑
i,j=1

xk
ijc(i, j) +

n−1∑
k=1

p∑
i,j,l,m=1

xk
ijx

k+1
lm d(j, l)

+
p∑

i,j=1

xn
ijd(j, s1), (3.1)

where d(j, l) denotes the passive traversal cost of a shortest
path between vj and vl in G; hence, d(j, l) is calculated by
adding the weights c(·, ·) in any shortest path (as determined

70 NETWORKS—2005

by a method such as Dijkstra’s algorithm [11]) from vj to vl.
To ensure that every edge of G has been actively traversed
at least the required number of times, we require that the
constraints

n∑
k=1

(
xk

ij + xk
ji

)
≥ f (i, j) (3.2)

are satisfied for all i, j = 1, . . . , p. The constraints
(

n

f (i, j)
− εij

)
xk

ijx
�
ij ≤ |� − k| (3.3)

for all k, � = 1, . . . , n and i, j = 1, . . . , p ensure a spread
between consecutive active traversals of the same edge, where
εij ≥ 0 represents a tolerance within which solutions are
deemed acceptable in terms of scheduling spread. If the above
binary program has a feasible solution in the special case
where εij = 0 for all i, j = 1, . . . , p then the spread between
all pairs of consecutive traversals of the same edge in G is
ideal, for all edges vivj ∈ E(G). However, it may often not
be the case that there exists a feasible solution for the pro-
gram where εij = 0. In such cases some of the tolerances will
have to be positive. These tolerances may be user–specified
constants, or may be incorporated as variables that are to
be minimized, by altering the objective funcion (3.1) appro-
priately. Note that the nonlinear constraints (3.3) may be
replaced by a milder set of linear constraints of the form

r+b∑
k=r

(
xk

ij + xk
ji

)
≤ 1, (3.4)

which dictate that at least b edges are to be traversed between
consecutive active traversals of the edge vivj ∈ E(G).

The problem may therefore be solved via an integer pro-
gramming approach. However, a large number of branches
may occur when solving this problem with a traditional tech-
nique, such as the branch–and–bound method, potentially
rendering an integer programming approach impractical.

Furthermore, the method of measuring spread between
consecutive active traversals of the same edge, as defined in
(3.3), may not be appropriate in many practical applications.
In practical applications, a separation in terms of the times at
which an edge is serviced within some scheduling window
is frequently desired. In these cases a count of the number of
active traversals of other edges found between consecutive
active traversals of the same edge may render an inadequate
measure of temporal spread. We therefore reformulate the
notion of spread in the next section, and define a version of the
problem more suited to practical vehicle routing applications.

4. PROBLEM DEFINITION OF THE SMTPP

A more focussed version of the general problem described
in section 2, thought to be relevant to problems involving
the determination of vehicle routes in networks, is presented
in this section. This incarnation of the problem is referred

FIG. 1. The route schedule for a solution sequence S, with total travelling
time D(S). The schedule has κ shifts and a duration of τ time units.

to as the SMTPP (Scheduled Multiply Traversed Postman
Problem), and defines spread in temporal terms. Given the
weighted graph defined in section 2, the definition of the
SMTPP is developed as follows.

The total routing cost of the route is still given by

C(S) =
n∑

i=1

c(si, ti) +
n−1∑
j=1

d(tj, sj+1) + d(tn, s1), (4.1)

where d(k, l) denotes the cost of the shortest path between
any two vertices vk and vl in G, and c(i, j) is the cost weight of
the edge vivj, as before. In the SMTPP, however, the notion
of spread is defined in terms of the degree of separation of the
time instances at which active traversals of edges commence,
within the total scheduling window. Denote the scheduling
window length by τ . The time taken to traverse an edge,
denoted p(i, j), is specified as an input parameter for the prob-
lem, and may, for example, be calculated from the speed of
the vehicle. The total time spent traveling, denoted by D(S),
is smaller than τ in a feasible solution. In practical cases the
value of D(S) is often expected to be substantially smaller
than τ . Particularly in these cases it becomes necessary to
separate the route into portions, leaving periods of vehicle
inactivity between the portions. Practically, these periods of
inactivity correspond to times at which the vehicle may not
work (e.g., after hours or public holidays) or simply to idle
time. In the SMTPP, it is assumed that the route is sepa-
rated into κ segments of equal duration (called shifts) that are
evenly placed throughout the interval [0, τ] on the real line
(where κ is a user–specified parameter), as shown graphically
in Figure 1. The value of κ chosen by the user will reflect the
scheduling needs in the application being modeled. If daily
routes are sought in a weekly time window, then a logical
choice of parameters is κ = 7, and τ = 7×24×60 minutes.

Under the scheme depicted in Figure 1, the time instants at
which the traversals of edges commence may be determined
in O(n) time, where n is the length of the solution sequence
S. Given the traversal commencement times of each edge,
the spread of a solution is captured by the function

T (S, τ , κ)

=

∑
vivj ∈ E(G)

f (i, j) > 1

∑f (i,j)
l=2

(
u

(vi ,vj)

l (S,τ ,κ)−u
(vi ,vj)

l−1 (S,τ ,κ)

τ/f (i,j) − 1

)2

f (i, j) − 1

1
2

,

(4.2)

NETWORKS—2005 71

FIG. 2. Graphical representation of a small problem graph, G∗.

where u
(vi ,vj)

l (S, τ , κ) denotes the time instant at which active
traversal of the lth occurrence of edge vivj in S commences.
Edges that need to be traversed actively just once may be tra-
versed at any time within the scheduling window, without
influencing the temporal spread of the route, and conse-
quently, edges with frequency f (i, j) = 1 are omitted from the
objective T (S, τ , κ). The objective takes its minimum value

of 0 if and only if u
(vi ,vj)

l (S, τ , κ)−u
(vi ,vj)

l−1 (S, τ , κ) = τ/f (i, j)
for all edges vivj ∈ E(G), that is, when the temporal spread
between consecutive active traversals of all edges are ideal
(equal and maximal). Otherwise the value T (S, τ , κ) is pos-
itive. The expression in (4.2) is the square root of the sum of
the squares of the percentage deviations of all pairs of closest
active traversals (of the same edge) from their ideal values.
The function is similar to a standard deviation calculation, but
differs in that it calculates the (linearised) second moment of
the percentage temporal deviation values with respect to zero,
and not with respect to their average values.

The functions (4.1) and (4.2) are the objectives of the
SMTPP. The optimization approach taken in the SMTPP is to
view the spread function (4.2) as a constraint and to attempt
to minimise the distance function (4.1).

The SMTPP is therefore the problem of determining a
route R, with corresponding solution sequence S, of
minimum total distance C(S), for which T (S, τ , κ) ≤ T̂ .

Here T̂ denotes the threshold value for spread, a value
above which a solution is considered to have an unaccept-
ably high spread deviation. The choice of a value for T̂
is influenced by the user in the heuristics presented in this
article. Specifically, the value of T̂ is set equal to a user–
specified fraction, denoted c, of the T (S, τ , κ) value of the
solution obtained by the construction heuristic (described in
the next section). The local search heuristic, described in
section 6, is then used in an attempt to find a good solution
for which T (S, τ , κ) ≤ T̂ . However, the construction heuris-
tic is expected to yield a reasonable spread value in practice,
and hence, not much user experimentation with values for c
is expected.

Consider the small example graph G∗ in Figure 2. Assume
that the cost weights represent distances and are expressed in
kilometres.

FIG. 3. Graphical representation of the schedule of the solution
sequence S∗.

The traversal durations of the edges are calculated by
assuming an average vehicle speed of 60 km/h. The speed
of 60 km/h is chosen to simplify the discussion, because it
implies that the cost weights equal the traveling time (in min-
utes) of the edges [and hence, C(S∗) = D(S∗)]. Assume also
that the scheduling window has length τ = 125 minutes and
is to be divided into two shifts.

A candidate solution to the SMTPP on the problem graph
G∗ is given by

S∗ = 〈(1, 3), (4, 2), (3, 5), (5, 1), (2, 3), (1, 3), (3, 4), (4, 2),

(2, 3), (3, 1), (5, 1), (3, 4), (2, 3)〉.
This sequence represents the full closed route (1,3), (3,4),

(4,2), (2,3), (3,5), (5,1), (1,3), (3,2), (2,3), (3,1), (1,3), (3,4),
(4,2), (2,3), (3,1), (1,5), (5,1), (1,3), (3,4), (4,2), (2,3), (3,1).
Here, bold-faced edges denote active traversals (present in
S∗), while passive traversals, typeset in normal font, are found
by calculating shortest distance routes between nonadjacent
active traversals in S∗.

A graphical representation of the schedule corresponding
to the route is shown in Figure 3. For this solution C(S∗) = 85
and T (S∗, 125, 2) = 0.2939. The traversal commencement
times of all of the edges in S∗ are displayed in Table 1.

5. CONSTRUCTION HEURISTIC FOR THE SMTPP

We introduce a simple construction heuristic solution
procedure for the SMTPP, that operates by linking circuit
segments through several copies of the graph G. The method
is first described in algorithmic fashion, followed by a more
detailed explanation of each step.

TABLE 1. Traversal commencement times of the edges in S∗, for the
example SMTPP graph instance G∗.

Traversal
Position in S∗ Edge commencement time

1 (1,3) 10
2 (4,2) 18
3 (3,5) 27
4 (5,1) 33
5 (2,3) 42
6 (1,3) 49
7 (3,4) 73
8 (4,2) 77
9 (2,3) 83

10 (3,1) 86
11 (5,1) 92
12 (3,4) 98
13 (2,3) 108

72 NETWORKS—2005

5.1. Procedure: Construction Heuristic for the SMTPP

Inputs. (1) A weighted graph G of order p and with ver-
tex set V(G) = {v1, . . . , vp}, edge set E(G) and edge weights
c(i, j) (cost weights), f (i, j) (frequency weights), and p(i, j)
(traversal durations), for all edges vivj ∈ E(G). (2) Schedul-
ing window length, τ . (3) Number of shifts used, κ .

Outputs. A closed route traversing each edge vivj ∈
E(G) at least f (i, j) times and in which an attempt is made to
spread out the traversal commencement times of the active
traversals of each edge vivj in the interval [0, τ].

1. Construct N = 2fmax copies of the graph G, where

fmax = max
vivj∈G

{f (i, j)}. (5.1)

Assign to each copy of the graph a unique index from 1
through N .

2. Assign to each edge of Gk the status passive, k = 1, . . . , N .
3. Repeat the following until all edges of the original graph

G have been selected: (a) From the edges of the prob-
lem graph G that have not yet been selected, select an
edge vivj randomly. (b) Choose f (i, j) indices between 1
and N (inclusive) according to a predetermined selection
rule (discussed later). (c) For each of these f (i, j) indices
chosen, assign to the edge vivj the status active in the
corresponding indexed copies of the problem graph.

4. Identify connecting vertices between the indexed copies
of the problem graph (chosen according to a method
described later). These vertices define the starting and end-
ing points of subroutes to be found in each indexed graph
during the next step. Any vertex incident to an active edge
in G1 is selected to be both the starting vertex of G1 and
the ending vertex of GN .

5. Find, in Gk , a subroute that traverses the edges marked
active at least once and that starts and ends at the vertices
identified in the previous step, for all k = 1, . . . , N . A
modified version of Frederickson’s heuristic is used to
find this subroute.

6. Construct a route S = 〈(vs1 , vt1), (vs2 , vt2), . . . , (vsn , vtn)〉
by linking the consecutively numbered subroutes through
their ending and starting vertices.

7. Determine the traversal commencement times of the edges
in S according to the scheme depicted in Figure 1. �

The method uses N = 2fmax copies of the problem graph
in step 1 to ensure that the same edge is never marked active
in consecutively indexed copies of the problem graph. The
selection rule in step 3(b) chooses the set of f (i, j) indexed
graphs that has the smallest total sum of p(i, j) values for the
active edges already assigned to them, while ensuring a gap of
at least �N/f (i, j)−1	 or alternatively
N/f (i, j)−1� between
the f (i, j) graph copy indices. The decision of whether to
use �N/f (i, j) − 1	 or
N/f (i, j) − 1� gaps between closest
indices is made as follows: the value N/f (i, j)− 1 is rounded
to the nearest integer, and that number of gaps is used (start-
ing from the smaller index and proceeding) until the sum of
the rounding errors (i.e., the difference between the number
of gaps used and N/f (i, j) − 1) exceeds the rounding error
of rounding N/f (i, j)−1 in the opposite direction. From that

point onward the other rounded value is used once and the
process repeats itself. Note that a computer implementation
of the heuristic would not wastefully store the N indexed
copies of the problem graph but would instead store only the
information about which edges are active in each graph. In
step 4 the starting and ending vertices identified for consec-
utively indexed graph copies are those pairs of vertices (one
in each graph copy), considering only vertices incident to
active edges, that have the cheapest traversal cost between
them. Because a closed route is sought, the same vertex is
chosen to be the starting vertex of the first graph and ending
vertex of the last graph. Step 5 implements a version of Fred-
erickson’s heuristic for the RPP [20], that is modified to find
a route that starts and ends at specified (potentially different)
vertices.

The construction heuristic is applied to the graph of Figure
2 to illustrate its operation. The same input parameters as
those used in section 4 are used, and therefore the scheduling
window length, τ , equals 125 and the number of shifts used,κ ,
equals 2. The edge cost weights are assumed to be expressed
in kilometres, and a constant vehicle speed of 60 km/h is used.

The largest number of active traversals required for any
edge in the graph is 3, and therefore, step 1 of the algorithm
constructs six copies of the graph, indexed G∗

1 , . . . , G∗
6 . In

each of these graphs, some of the edges are designated active,
according to the selection rule [step 3(b)] described earlier.
The active edges for each of these graph copies are depicted
by means of bold faced lines in Figure 4. The vertices at

FIG. 4. Heuristic solution (represented by the path followed by the arrows).
Edges that need to be actively traversed are shown as boldfaced edges in each
of the indexed graphs G∗

k , k = 1, . . . , 6.

NETWORKS—2005 73

TABLE 2. Routes within the indexed graphs G∗
i , i = 1, . . . , 6.

Starting Ending
Graph vertex vertex Route

G∗
1 1 3 〈(1, 3), (3, 4), (4, 3)〉

G∗
2 3 5 〈(3, 2), (2, 3), (3, 5)〉

G∗
3 5 4 〈(5, 1), (1, 3), (3, 2), (2, 4)〉

G∗
4 4 3 〈(4, 3), (3, 2), (2, 3)〉

G∗
5 3 1 〈(3, 1)〉

G∗
6 1 1 〈(1, 5), (5, 1), (1, 3), (3, 4), (4, 2), (2, 3), (3, 1)〉

Edges that are actively traversed are shown in bold face.

which the subroutes in each of the indexed graph copies start
and end are identified next (step 4). These vertices are listed
in Table 2.

A route is now found in each of these indexed graphs
according to the modified version of Frederickson’s heuristic.
The resultant route in each graph is also shown in Table 2.
The heuristic solution is found, starting from vertex 1, by
traversing each of these subroutes and returning to vertex 1.
This closed route is given in coded form by

S∗
0 = 〈(1, 3), (3, 4), (2, 3), (3, 5), (5, 1), (1, 3), (2, 4), (4, 3),

(2, 3), (3, 1), (5, 1), (4, 2), (2, 3)〉.
The full solution is depicted by the traversal in Figure 4.

A schedule of the route is shown in Figure 5. The traversal
commencement times for the edges in S∗

0 are shown in Table
3. The total weight of this solution is 77 cost units, which is
better than that of the feasible solution presented in section 4.
The temporal spread of the solution equals 0.3098.

6. LOCAL SEARCH HEURISTIC FOR THE SMTPP

The class of local search methods is a family of heuristics
that operate by iteratively making transformations (referred
to as moves) to a candidate solution in a way that tends to
improve the solution as the search progresses. Typically, a
local search heuristic operates by considering a number of
candidate moves during an iteration, and selects the best one
to perform on the solution. During the next iteration, the
process is repeated on the transformed solution.

The broad procedure according to which moves are made,
for the SMTPP, is described in section 6.1. A procedure that
forms part of the process of performing a move is described
next, in section 6.2. This is followed, in section 6.3, by a pseu-
docode listing of the local search procedure for the SMTPP.
Finally, an example illustrating the application of the heuristic
to a small SMTPP instance, is presented in section 6.4.

FIG. 5. Graphical representation of the traversal commencement times
of S∗

0 , the solution obtained by the construction heuristic for the example
SMTPP instance.

TABLE 3. Traversal commencement times of the edges in S∗
0 , obtained

by the construction heuristic, for the example SMTPP graph instance G∗.

Traversal
Position in S∗ Edge commencement time

1 (1,3) 12
2 (3,4) 16
3 (2,3) 26
4 (3,5) 29
5 (5,1) 35
6 (1,3) 37
7 (2,4) 44
8 (4,3) 50
9 (2,3) 81

10 (3,1) 84
11 (5,1) 90
12 (4,2) 100
13 (2,3) 106

6.1. Performing Local Search Moves

The method according to which moves are performed
allows move types to be used that directly specify the order in
which required edges are traversed in the changed solution,
for some general ARP. An example of such a move type is
one that simply exchanges the order in which two required
edges are traversed. Given, for example, the following route

S1 = 〈(3, 4), (4, 1), (5, 6), (5, 4), (6, 8)〉,
edges (3, 4) and (5, 4) might be exchanged, to yield

S2 = 〈(5, 4), (4, 1), (5, 6), (3, 4), (6, 8)〉.
Typically, such a move type would consider all pairs of

these exchanges and then perform the one that yields the
route of minimum overall cost. During the previous exchange,
the traversal directions of the required edges are not altered,
and it may be better to traverse the edge (3, 4) (for exam-
ple) in the direction (4, 3) instead of in the direction (3, 4).
Consequently, it is necessary to determine the optimal traver-
sal directions after the exchange. Applying a move therefore
involves altering the order of the required edges in the route,
and then determining their direction of traversal. The method
described in the next section illustrates how the traversal
directions may be determined.

The local search heuristic heuristic for the SMTPP makes
use of a move type analogous to the Two–Opt move type
[9, 18], for the traveling salesman problem. The basic oper-
ation of the move type, for some general ARP, is shown in
Figure 6. The vertex 0 represents the “domicile vertex” of
a closed route, and may correspond to a vehicle depot in a
practical application. It may be omitted in problems where a
particular vertex is not specified.

6.2. Determining Optimal Traversal Directions

The algorithm described in this section computes the
optimal traversal directions for the edges in a solution
sequence S, given a fixed order of the edges in the sequence.

74 NETWORKS—2005

FIG. 6. The mechanism behind the Two-Opt move. The edges (s1t1, s2t2)
and (s4t4, s5t5) may, for example, be removed from the cycle (0, s1t1),
(s1t1, s2t2), (s2t2, s3t3), (s3t3, s4t4), (s4t4, s5t5), (s5t5, 0), and the traversal
reconnected to form the alternative cycle (0, s1t1), (s1t1, s4t4), (s4t4, s3t3),
(s3t3, s2t2), (s2t2, s5t5), (s5t5, 0).

The algorithm may be applied each time after a local search
move has been made to yield the shortest distance for the new
ordering of entries within S.

Consider a routing sequence S = 〈(vs1 , vt1), (vs2 , vt2), . . . ,
(vsn , vtn)〉 for a general ARP. From the solution sequence,
construct a directed, layered auxilliary graph L with vertex
set V(L) = {b, s1t1,t1s1,s2t2, t2s2,. . . , sntn, tnsn, e}. The first
and last layer of the auxilliary graph consist of a single vertex,
and the other layers consist of two vertices. Each layer of the
graph represents the two possible active traversal directions
(vsi , vti) and (vti , vsi), 1 ≤ i ≤ n of an edge in S. The vertices
b and e in L represent the vertices in G at which the route is
to begin and end. For a closed route vb = ve, and in the RPP
these vertices are adjacent to a required edge.

For each i (0 < i < n) construct edges in L directed
from siti to si+1ti+1 and ti+1si+1, and from tisi to si+1ti+1

and ti+1si+1. Also, add edges directed from b to s1t1 and t1s1

and from sntn and tnsn to e. Assign a weight of d(ti, si+1)

[d(si, ti+1), respectively] to the edge in L between siti and
si+1ti+1 [tisi and ti+1si+1, respectively] for every 0 < i < n,
where d(i, j) denotes the weight of a shortest path from
i to j. Similarly assign a weight of d(ti, ti+1) [d(si, si+1),
respectively] to the edge in L between siti and ti+1si+1 [tisi

and si+1ti+1, respectively] for every 0 < i < n. Finally,
assign a weight of d(b, s1) [d(b, t1), respectively] to the edge

in L between b and s1t1 [t1s1, respectively] and a weight
d(tn, e) [d(sn, e), respectively] to the edge between sntn [tnsn,
respectively] and e. This construction is shown graphically
in Figure 7.

Each route from b to e in L represents one way of arranging
the active traversal directions of edges within S, and a shortest
path from b to e represents a set of optimal directions by which
to traverse the edges of S. For example, if vertex t2s2 is on the
calculated shortest path, then the second edge of S should be
actively traversed from vt2 to vs2 , and hence, coded as (vt2 , st2)

in S. Note that the total weight of the route may be found by
adding the sum of the weights of the required edges to the
weight of the shortest path. This method for performing local
search moves for ARPs has been proposed independently by
Groves et al. [25, 26], and by Lacomme et al. [29, 36].

The computational complexity of finding a shortest path
in a directed, acyclic graph, such as L, is O(|E(L)| +
|V(L)|) (see, e.g., Gondran and Minoux [23]), because no
updating of information, such as occurs in Dijkstra’s [11] or
Floyd’s [19] methods, is necessary during the algorithm exe-
cution. Here, E(L) is the edge set of L and V(L) the vertex
set, as before. However, because no earlier layer of L can be
reached from a later layer, and because each layer consists of
a predetermined number of vertices, and is connected to the
other layers in the particular manner shown, this complexity
can be reduced to O(|V(L)|).

If a shortest path through L is calculated each time that a
move is evaluated, the computational complexity of the Two–
Opt move type is O(|S|3) per iteration. Note, however, that
the length of this shortest path can be determined in a con-
stant amount of time if the shortest distances from each vertex
to all vertices in later layers in L is known for the untrans-
formed solution (see Groves and van Vuuren [27] for details).
This allows, for example, Two–Opt moves with O(|S|2) time
complexity per iteration, to be used in heuristics for the RPP
(or to optimize an individual route in a constrained ARP).
In the SMTPP, however, the mentioned time-saving method
cannot be used, due to the requirements of the spread cal-
culation. Nevertheless, other methods that exploit the fact
that some distance labels remain unchanged between itera-
tions can be used to speed up execution (see Groves [25] for
details).

FIG. 7. The layered graph, L, corresponding to the solution sequence S = 〈(vs1 , vt1), (vs2 , vt2), . . . , (vsn , vtn)〉.

NETWORKS—2005 75

6.3. Description of Local Search Heuristic

The heuristic described in this section uses the solu-
tion generated by the construction heuristic, presented in
section 5, as a starting solution and attempts to improve it
in an iterative fashion using Two–Opt transformations.

The Two–Opt heuristic differs from a standard implemen-
tation in that solutions are not compared purely on their cost
objective functions. A solution is considered to be better than
the current best encountered solution in one of two cases,
depending on whether the spread of the best encountered
solution is more than T̂ or not. If the spread of the best
encountered solution is infeasible, then the solution is bet-
ter if its spread value is better, regardless of the value of its
cost objective function. However, if the spread value of the
best encountered solution is feasible, then a solution is better
if its cost objective function value is less (provided its spread
value is feasible) or if the cost objective functions are equal
but the solution has a better spread value.

When selecting the best move to make, the heuristic does
not take into account the case where the traveling time [i.e.,
D(S)] of solutions exceed the scheduling window length τ .
The heuristic measures the spread as it would be measured
if τ equalled D(S). If the traveling time of the final solution
exceeds τ , it indicates that the heuristic is unable to find a fea-
sible solution. In this case, the user must choose a less restric-
tive value for c, or reduce the number of required traversals.
The rationale for not taking τ into account during the search
is to allow the traveling time of the solution to gradually
decrease as the heuristic reduces the cost objective function.

In practice, it was found that the heuristic makes many
moves in which the cost objective function value remains
unchanged towards the end of the execution run, and that the
corresponding improvements in spread between these iter-
ations are very slight. It is preferable to allow these moves
to take place, because they frequently allow solutions with
a better cost objective function to be uncovered later. Nev-
ertheless, in the computer implementations described in this
article, a maximum of 10 consecutive iterations that yielded

TABLE 4. Traversal commencement times of the edges of S∗
best, the final

solution obtained by the local search heuristic on the SMTPP instance in
Figure 2.

Traversal
Position in S∗

best Edge commencement time

1 (1,3) 13.25
2 (3,2) 17.25
3 (2,4) 20.25
4 (1,5) 34.25
5 (1,3) 38.25
6 (2,3) 45.25
7 (3,4) 48.25
8 (4,2) 78.75
9 (2,3) 84.75

10 (3,1) 87.75
11 (1,5) 91.75
12 (5,3) 93.75
13 (3,4) 99.75

FIG. 8. Graphical representation of the traversal commencement times of
the edges of S∗

best, the final solution obtained by the local search heuristic
for the SMTPP instance in Figure 2.

no improvement in the cost objective were allowed, before
the procedure was terminated.

It is worth noting that the local search heuristic may be
used to approximate a so-called “efficient frontier,” as done
in investment portfolio optimization problems [34, 35]. Such
a curve, representing the trade–off between the two objective
functions may be a useful aid for practitioners.

The local search heuristic described above was applied to
the small problem instance of Figure 2 as an example. The
same problem parameters as those in Section 5 were used,
and it was assumed that a user specified that T̂ should equal
90% of the spread value of that obtained by the construction
heuristic (i.e., T̂ = 0.2788). The best solution found by the
improvement heuristic under these conditions was

S∗
best = 〈(1, 3), (3, 2), (2, 4), (1, 5), (1, 3), (2, 3), (3, 4), (4, 2),

(2, 3), (3, 1), (1, 5), (5, 3), (3, 4)〉,
with a cost weight of 72 km and a spread objective function
value of 0.2227. The traversal commencement times of each
edge in this solution is given in Table 4, and shown graphically
in Figure 8.

7. TEST RESULTS

The results of applying the construction and local search
heuristics, for the SMTPP, on randomly generated test prob-
lem instances are presented in this section. Each of these
graph instances belongs to one of following six different
structures:

1. Random trees. Connected acyclic graphs. [Encoded,
using the four–letter acronym “TREE”]

2. Trees with multiple star–like structures. Trees con-
sisting of a number of connected focal vertices to
which leaves are attached. [Encoded, using the acronym
“STAR”]

3. General connected graphs. [Encoded, using the acronym
“GNRL”]

4. Grid–like graphs. Graphs with a rectangular mesh–like
structure. [Encoded, using the acronym “GRID”]

5. Circulant–like graphs. Graphs whose adjacency matri-
ces are near circulant matrices. [Encoded, using the
acronym “CIRC”]

6. Near–complete graphs. Graphs with a very high edge
density. [Encoded, using the acronym “COMP”]

Graphs of different sizes (numbers of edges) were consid-
ered within each of the above structure classes, according to
the following categories. The following categories of graphs
were used.

76 NETWORKS—2005

1. Small graphs. Graphs of size at least 30 and at most
100 [Encoded, using the letter “S”]

2. Medium graphs. Graphs of size at least 100 and at most
200 [Encoded, using the letter “M”]

3. Large graphs. Graphs of size at least 200 and at most
300 [Encoded, using the letter “L”]

The orders of the trees, grid–like, near–complete, and star–
like graphs are determined by the structure of the graph,
but the orders of the general connected graphs and the
circulant–like graphs need to be specified. The order of each
circulant–like graph was set to half its size, and the order of
each general connected graph was taken between 15 and 50
(for small graphs), 50 and 100 (medium graphs), and 100 and
150 (large graphs).

Ten instances of triply weighted graphs within each size
class and within each structure class were generated ran-
domly, giving a total of 180 test graphs altogether. The graphs
are coded as follows: the sixth instance of a medium grid–
like graph generated is, for example, labeled “M-GRID-6.”
The weights of the graph edges in all of the above classes
were generated by randomly placing vertices within the unit
square and then assigning cost weights equal to 1000 times
the Euclidean distances between the vertices. The time taken
to traverse each edge was set equal to the cost weight of the
edge. This is equivalent to assuming that the cost weights are
expressed as distances (in km), and the vehicle for which a
route is sought travels at a constant speed of 60 km/h. The
frequency weight of an edge was set equal to 0 according
to a 50% probability, otherwise its value was chosen uni-
formly between 1 and 4. The scheduling window length,
τ , for each instance was set equal to twice the C(S) value
obtained by applying the construction heuristic, and κ = 10
throughout. The value of T̂ used for each instance was set
equal to the spread value of the solution obtained by applying
the construction heuristic to that instance.

Each of these graph instances may be found on the inter-
net [30, 39]. The results obtained by applying the local search
procedure of section 6 are given in Tables 5–7. The columns
labeled “LB” contain lower bound values for each of the
instances, calculated by determining a minimum weight max-
imum cardinality matching on the odd–degree vertices of
the complete subgraph induced by the required edges [where
f (i, j)− 1 additional required edges are created between ver-
tices i and j for each required edge vivj for which f (i, j) > 1].
The edge weights of an edge vivj of the complete graph on
which the matching above is calculated equals d(i, j), the
shortest distance from vertex i to j in G. The execution times,
listed in the columns labeled “Time,” are expressed in sec-
onds, and measure the total execution time of the heuristics
(including preprocessing). All results were obtained using
a Pentium IV (2.8 GHz) personal computer with 512 MB
of RAM.

The difference between the C(S) and “LB,” shown in
Tables 5–7, tends to be large. The lower bounding procedure
is not expected to yield good lower bounds, in general, and
therefore, no judgements on the performance of the heuristics
is made. However, in the case of near–complete graphs, the

average percentage gap over the lower bound values, for the
solutions obtained by the improvement procedure, equal 8,
3, and 2% for the small, medium, and large graphs, respec-
tively. In these cases the lower bounding procedure, and the
construction heuristic, yield good results because the sub-
graphs on which the matching phases of these procedures are
determined tend to be connected.

The improvement heuristic yields an average improve-
ment of 13% on the solution generated by the construction
heuristic, on the problem instances considered. The improve-
ment quality attained seems to be roughly uniform across
the graph classes, with the exception of the near–complete
graphs, where average improvements of 9, 5, and 3% are
obtained for the small, medium, and large graphs, respec-
tively. These inferior improvement qualities reflect the fact
that the construction heuristic already obtains solutions that
are closer to the optimal values, in the case of near–complete
graphs. The average computational time expended equals
approximately 30 minutes for the instances of the large data
set, 6.5 minutes for the instances of the medium data set, and
27 seconds for the instances of the small data set.

8. CONCLUSION

In this article heuristics are introduced to solve the newly
defined problem of finding an efficient closed route through
a weighted graph, traversing each edge a pre–specified num-
ber of times, with the additional constraint that consecutive
traversals of the same edge should be as evenly spread through
the route as possible. A mathematical program is introduced,
using a simplistic definition of this spread requirement.
However, this simplistic view of spread is considered to
be inadequate in many practical cases, and hence, a more
focussed version of the problem (referred to as the SMTPP in
this article), relevant specifically to vehicle routing problems,
is defined. A graph theoretic solution construction heuristic
is introduced for the SMTPP, with a computational complex-
ity of O(p3), where p denotes the order of the input graph.
A local search improvement heuristic is introduced for the
SMTPP, which operates by attempting to improve a solu-
tion generated by the construction heuristic. The local search
heuristic has a computational complexity of O(q3) per itera-
tion, where q denotes the total number of required traversals
in the problem. The heuristics were tested on random test
instances, generated according to different classes of prob-
lem graph structure. The local search heuristic improves on
the solution generated by the construction heuristic by an
average of 13% for the test problems considered. The test
data are available on the internet as benchmark problems for
further work on the SMTPP.

Acknowledgments

The authors are endebted to Werner Gründlingh for pro-
ducing the graphics in this paper. Work towards this paper
was supported by the South African National Research
Foundation under grant number GUN 2053755 and Research
Sub–Committee B at the University of Stellenbosch. Any
opinions, findings, and conclusions or recommendations

NETWORKS—2005 77

TABLE 5. Test results obtained for the small SMTPP benchmark data set.

Constr. Heur. Impr. Heur.
Time

Instance Size |S| τ LB C(S) T C(S) T (s)

S-COMP-1 51 45 42,264 17,168 21,132 0.1775 19,443 0.1629 1
S-COMP-2 61 79 101,078 44,108 50,539 0.2235 45,620 0.1650 12
S-COMP-3 40 46 58,802 23,862 29,401 0.2531 25,501 0.1996 1
S-COMP-4 40 56 63,894 26,116 31,947 0.1509 30,089 0.1375 2
S-COMP-5 88 111 121,906 54,377 60,953 0.2119 55,972 0.1956 68
S-COMP-6 53 75 76,066 32,019 38,033 0.1948 35,060 0.1733 10
S-COMP-7 98 124 148,352 66,717 74,176 0.1646 70,346 0.1478 84
S-COMP-8 89 124 178,970 80,325 89,485 0.2175 84,289 0.1573 76
S-COMP-9 70 73 92,014 35,885 46,007 0.2255 40,568 0.1932 10
S-COMP-10 76 74 91,542 38,851 45,771 0.2204 40,320 0.1764 9

S-CIRC-1 34 46 80,832 26,311 40,416 0.2265 31,740 0.2251 2
S-CIRC-2 62 108 180,926 61,063 90,463 0.2106 85,091 0.2045 16
S-CIRC-3 20 18 28,950 9,711 14,475 0.2328 12,496 0.1764 0
S-CIRC-4 82 122 289,134 76,028 14,4567 0.2610 114,668 0.2518 86
S-CIRC-5 76 100 191,886 46,742 95,943 0.1941 83,786 0.1858 32
S-CIRC-6 57 63 141,334 45,638 70,667 0.2510 62,368 0.2426 4
S-CIRC-7 64 85 154,944 44,824 77,472 0.2367 61,478 0.2208 16
S-CIRC-8 82 94 184,016 54,059 92,008 0.2142 80,401 0.1851 20
S-CIRC-9 77 106 206,392 62,168 103,196 0.1775 91,451 0.1754 29
S-CIRC-10 39 53 106,718 31,031 53,359 0.2392 41,692 0.2255 3

S-GNRL-1 40 59 189,816 31,918 94,908 0.1770 83,107 0.1752 3
S-GNRL-2 50 75 99,552 33,205 49,776 0.1681 44,523 0.1618 12
S-GNRL-3 91 113 160,242 57,995 80,121 0.2128 70,606 0.2003 44
S-GNRL-4 63 76 109,696 44,493 54,848 0.2449 48,482 0.2124 11
S-GNRL-5 83 122 203,052 73,293 101,526 0.2110 87,776 0.1943 63
S-GNRL-6 77 95 139,940 54,253 69,970 0.2080 59,550 0.1793 32
S-GNRL-7 50 51 114,248 37,074 57,124 0.2165 49,321 0.2058 2
S-GNRL-8 92 126 180,948 72,859 90,474 0.2179 81,277 0.1869 87
S-GNRL-9 70 89 122,390 49,118 61,195 0.2369 55,194 0.2049 30
S-GNRL-10 99 130 212,714 70,937 106,357 0.2470 85,506 0.2186 147

S-GRID-1 91 85 292,126 44,831 146,063 0.2171 116,642 0.2159 16
S-GRID-2 80 97 235,932 55,495 117,966 0.2026 100,195 0.1967 19
S-GRID-3 100 165 342,510 91,238 171,255 0.2121 149,226 0.2018 108
S-GRID-4 89 97 352,948 59,667 176,474 0.1830 142,551 0.1781 34
S-GRID-5 44 44 152,514 26,686 76,257 0.2012 65,648 0.1367 1
S-GRID-6 83 122 286,642 80,943 143,321 0.1962 132,394 0.1950 33
S-GRID-7 83 108 238,080 58,893 119,040 0.1861 96,784 0.1823 45
S-GRID-8 77 83 207,682 47,749 103,841 0.2408 89,775 0.2404 10
S-GRID-9 84 123 277,914 83,063 138,957 0.2115 115,810 0.2003 55
S-GRID-10 82 116 264,610 72,078 132,305 0.1994 116,662 0.1951 40

S-STAR-1 91 128 416,556 69,924 208,278 0.1875 171,286 0.1638 46
S-STAR-2 86 72 206,428 39,454 103,214 0.2040 84,018 0.1764 9
S-STAR-3 47 31 106,292 25,348 53,146 0.2485 44,502 0.1778 0
S-STAR-4 68 105 294,148 59,932 147,074 0.1926 122,924 0.1341 27
S-STAR-5 53 72 250,708 51,650 125,354 0.1769 108,358 0.1656 9
S-STAR-6 68 66 190,644 41,094 95,322 0.2307 86,946 0.1417 4
S-STAR-7 67 76 219,148 45,752 109,574 0.2414 90,726 0.2043 10
S-STAR-8 46 66 134,068 29,942 67,034 0.2361 60,894 0.2072 3
S-STAR-9 48 63 200,924 41,008 100,462 0.1938 87,664 0.1613 4
S-STAR-10 37 46 101,464 24,600 50,732 0.2080 47,242 0.1689 2

S-TREE-1 57 71 243,300 38,738 121,650 0.1610 93,084 0.1265 9
S-TREE-2 37 46 154,964 24,466 77,482 0.2836 61,268 0.2608 1
S-TREE-3 72 107 502,016 69,572 251,008 0.2178 187,992 0.1947 45
S-TREE-4 93 109 396,940 64,198 198,470 0.1845 169,880 0.1711 38
S-TREE-5 42 42 217,520 24,900 108,760 0.2585 75,956 0.2285 1
S-TREE-6 97 115 577,176 87,782 288,588 0.1852 250,290 0.1640 46
S-TREE-7 31 56 231,964 41,388 115,982 0.2436 85,468 0.2275 5
S-TREE-8 59 98 328,900 51,922 164,450 0.2029 138,948 0.1686 31
S-TREE-9 90 120 495,052 80,014 247,526 0.1658 212,372 0.1482 54
S-TREE-10 40 71 221,396 42,062 110,698 0.2091 88,356 0.1812 7

The execution time expended on each instance is listed in the column labeled “Time.” A lower bound value for each instance is shown in the column
labeled “LB.”

78 NETWORKS—2005

TABLE 6. Test results obtained for the medium SMTPP benchmark data set.

Constr. Heur. Impr. Heur.
Time

Instance Size |S| τ LB C(S) T C(S) T (s)

M-COMP-1 130 153 196,310 88,638 98,155 0.2081 92,173 0.1663 261
M-COMP-2 181 255 259,482 123,001 129,741 0.1934 126,310 0.1731 1435
M-COMP-3 191 230 230,612 105,128 115,306 0.1912 109,680 0.1627 677
M-COMP-4 117 132 126,638 56,843 63,319 0.2270 58,139 0.1699 138
M-COMP-5 178 194 236,786 110,182 118,393 0.2131 114,233 0.1573 341
M-COMP-6 115 111 132,338 57,461 66,169 0.2532 59,455 0.1865 120
M-COMP-7 187 246 270,522 126,776 135,261 0.1902 131,344 0.1694 436
M-COMP-8 137 181 222,852 102,984 111,426 0.1811 106,217 0.1483 175
M-COMP-9 182 217 223,768 105,234 111,884 0.2346 107,892 0.1852 278
M-COMP-10 140 180 203,394 92,452 101,697 0.2066 96,707 0.1672 134

M-CIRC-1 197 223 482,052 131,063 241,026 0.2274 199,468 0.2251 930
M-CIRC-2 180 252 505,764 154,353 252,882 0.2272 221,310 0.2218 643
M-CIRC-3 187 239 435,652 128,355 217,826 0.2179 189,576 0.2119 589
M-CIRC-4 178 249 531,714 159,144 265,857 0.2395 231,363 0.2341 650
M-CIRC-5 190 252 498,186 142,349 249,093 0.1966 230,678 0.1948 451
M-CIRC-6 174 234 477,052 138,539 238,526 0.2044 211,409 0.2022 538
M-CIRC-7 175 240 466,700 138,184 233,350 0.1938 210,594 0.1916 578
M-CIRC-8 118 157 324,196 94,229 162,098 0.2409 127,177 0.2390 229
M-CIRC-9 196 220 453,528 124,505 226,764 0.2086 191,656 0.2060 466
M-CIRC-10 166 227 448,062 136,976 224,031 0.2205 197,510 0.2197 547

M-GNRL-1 158 174 281,936 101,431 140,968 0.2155 122,036 0.1867 332
M-GNRL-2 171 213 277,538 108,573 138,769 0.2013 125,415 0.1857 450
M-GNRL-3 152 204 394,472 123,192 197,236 0.2041 174,299 0.1945 398
M-GNRL-4 126 158 284,466 91,815 142,233 0.2299 123,127 0.2230 155
M-GNRL-5 169 201 431,502 110,430 215,751 0.2044 174,337 0.1987 480
M-GNRL-6 152 187 273,668 99,480 136,834 0.1668 130,117 0.1557 147
M-GNRL-7 197 246 324,340 128,952 162,170 0.2514 145,755 0.2275 729
M-GNRL-8 151 195 380,980 106,399 190,490 0.2279 154,516 0.2205 380
M-GNRL-9 151 183 337,204 106,357 168,602 0.2260 148,887 0.2237 194
M-GNRL-10 107 120 263,916 74,529 131,958 0.1793 118,496 0.1767 46

M-GRID-1 156 193 500,634 122,076 250,317 0.2455 204,180 0.2431 297
M-GRID-2 175 221 504,452 130,901 252,226 0.2203 206,493 0.2163 602
M-GRID-3 131 154 414,366 89,613 207,183 0.2244 165,169 0.2213 167
M-GRID-4 122 148 402,256 98,555 201,128 0.1860 178,992 0.1838 92
M-GRID-5 138 136 333,836 79,572 166,918 0.2349 126,652 0.2306 113
M-GRID-6 170 225 473,118 128,040 236,559 0.2336 184,335 0.2296 737
M-GRID-7 146 178 489,368 109,255 244,684 0.2075 223,619 0.2071 173
M-GRID-8 122 154 415,160 88,869 207,580 0.2013 161,215 0.1971 165
M-GRID-9 167 182 499,068 121,283 249,534 0.2022 218,407 0.2005 219
M-GRID-10 107 141 310,912 87,421 155,456 0.1999 131,879 0.1906 115

M-STAR-1 198 244 815,940 141,924 407,970 0.2241 357,160 0.2202 500
M-STAR-2 158 224 714,556 138,596 357,278 0.1826 301,140 0.1701 332
M-STAR-3 196 267 978,836 167,292 489,418 0.1977 395,170 0.1805 609
M-STAR-4 108 150 553,696 103,072 276,848 0.1803 253,828 0.1716 60
M-STAR-5 107 161 531,188 103,192 265,594 0.1689 228,778 0.1605 151
M-STAR-6 108 140 458,548 87,618 229,274 0.1833 202,556 0.1706 87
M-STAR-7 154 207 763,932 133,490 381,966 0.2260 306,994 0.2004 251
M-STAR-8 132 147 554,692 92,076 277,346 0.2259 225,562 0.1969 114
M-STAR-9 105 142 360,084 77,974 180,042 0.1714 171,520 0.1613 40
M-STAR-10 102 121 403,860 65,550 201,930 0.2217 157,536 0.2004 46

M-TREE-1 173 201 805,400 123,018 402,700 0.2294 311,850 0.2091 317
M-TREE-2 107 118 468,524 73,838 234,262 0.2299 197,118 0.2144 57
M-TREE-3 178 209 892,388 139,030 446,194 0.2278 385,110 0.2231 223
M-TREE-4 180 210 952,036 123,862 476,018 0.2279 408,000 0.2186 230
M-TREE-5 187 235 1,058,596 143,706 529,298 0.2268 453,388 0.2231 559
M-TREE-6 196 247 1,081,432 157,152 540,716 0.1918 484,816 0.1879 507
M-TREE-7 113 140 653,156 107,346 326,578 0.2025 271,046 0.1945 100
M-TREE-8 161 225 1,039,372 151,554 519,686 0.2101 409,562 0.1995 415
M-TREE-9 176 246 1,208,984 157,506 604,492 0.2341 492,638 0.2257 495
M-TREE-10 145 163 708,016 118,394 354,008 0.1933 297,484 0.1729 141

The computation time expended on each instance is listed in the column labeled “Time.” A lower bound value for each instance is shown in the column
labeled “LB.”

NETWORKS—2005 79

TABLE 7. Test results obtained for the large SMTPP benchmark data set.

Constr. Heur. Impr. Heur.
Time

Instance Size |S| τ LB C(S) T C(S) T (s)

L-COMP-1 251 299 317,956 150,275 158,978 0.2239 152,192 0.1758 1206
L-COMP-2 221 268 301,498 142,300 150,749 0.2003 145,726 0.1580 653
L-COMP-3 227 290 340,766 162,100 170,383 0.2086 166,799 0.1802 570
L-COMP-4 241 300 309,120 144,193 154,560 0.2045 148,348 0.1813 1000
L-COMP-5 205 277 309,698 146,008 154,849 0.2235 149,306 0.1707 771
L-COMP-6 250 319 364,884 174,522 182,442 0.2167 176,054 0.1490 1283
L-COMP-7 291 379 408,338 196,309 204,169 0.2262 200,131 0.1878 1656
L-COMP-8 239 316 350,690 164,408 175,345 0.2035 169,185 0.1722 1337
L-COMP-9 232 318 333,174 156,967 166,587 0.1946 160,824 0.1564 2691
L-COMP-10 230 246 281,112 130,888 140,556 0.2276 134,048 0.1854 1259

L-CIRC-1 247 309 599,236 173,252 299,618 0.2302 266,659 0.2289 1078
L-CIRC-2 268 350 647,530 189,790 323,765 0.2554 277,386 0.2532 1808
L-CIRC-3 261 346 631,294 179,996 315,647 0.2278 277,602 0.2268 2610
L-CIRC-4 210 274 510,898 149,996 255,449 0.2279 222,980 0.2245 783
L-CIRC-5 267 319 689,280 142,229 244,640 0.2190 214,090 0.2176 877
L-CIRC-6 218 283 544,226 165,668 272,113 0.2251 230,645 0.2222 1229
L-CIRC-7 245 303 582,098 170,198 291,049 0.2074 256,801 0.2062 1370
L-CIRC-8 274 334 640,668 181,974 320,334 0.2398 271,759 0.2382 2011
L-CIRC-9 267 344 629,696 182,056 314,848 0.2233 282,322 0.2228 1548
L-CIRC-10 276 380 740,456 219,582 370,228 0.2000 345,257 0.1975 2561

L-GNRL-1 215 266 533,522 152,411 266,761 0.2404 222,167 0.2351 955
L-GNRL-2 238 322 643,992 187,908 321,996 0.2257 279,705 0.2195 1522
L-GNRL-3 238 274 629,244 170,195 314,622 0.1911 270,550 0.1868 1142
L-GNRL-4 231 344 589,774 174,184 294,887 0.2154 261,204 0.2104 2379
L-GNRL-5 221 312 612,060 176,439 306,030 0.1984 266,473 0.1935 1982
L-GNRL-6 246 263 489,280 142,229 244,640 0.2190 214,090 0.2176 877
L-GNRL-7 215 314 682,760 173,846 341,380 0.2199 298,953 0.2166 1562
L-GNRL-8 219 294 646,776 170,193 323,388 0.2342 278,936 0.2310 1745
L-GNRL-9 292 348 673,412 214,975 336,706 0.2054 298,080 0.2033 3138
L-GNRL-10 295 358 635,404 192,342 317,702 0.2140 285,150 0.2115 2839

L-GRID-1 290 369 860,292 222,351 430,146 0.2077 397,531 0.2061 1752
L-GRID-2 221 267 748,294 166,040 374,147 0.2104 339,438 0.2052 468
L-GRID-3 298 352 791,266 201,581 395,633 0.2028 348,937 0.2021 2100
L-GRID-4 294 346 714,494 176,628 357,247 0.2384 308,964 0.2370 1662
L-GRID-5 274 296 727,826 166,472 363,913 0.2498 313,546 0.2494 918
L-GRID-6 240 304 737,244 180,482 368,622 0.2141 307,636 0.2114 1577
L-GRID-7 231 291 718,814 166,957 359,407 0.2038 298,136 0.2026 1190
L-GRID-8 227 266 677,696 159,304 338,848 0.1953 293,593 0.1943 1015
L-GRID-9 295 369 830,388 222,091 415,194 0.2191 364,848 0.2164 2502
L-GRID-10 270 328 798,338 185,230 399,169 0.2032 358,701 0.2009 1601

L-STAR-1 261 330 991,236 175,792 495,618 0.2357 421,638 0.2297 2840
L-STAR-2 227 301 1,032,028 171,096 516,014 0.1952 452,620 0.1908 1730
L-STAR-3 224 285 909,504 174,920 454,752 0.2400 393,152 0.2319 1782
L-STAR-4 259 303 1,015,912 197,234 507,956 0.1973 447,106 0.1913 1904
L-STAR-5 285 326 1,076,640 184,430 538,320 0.2069 442,370 0.1880 2513
L-STAR-6 224 289 932,976 182,848 466,488 0.2137 406,718 0.1979 1263
L-STAR-7 269 353 1,087,500 217,462 543,750 0.2140 478,934 0.2115 2860
L-STAR-8 262 313 981,512 199,838 490,756 0.1694 459,566 0.1583 2089
L-STAR-9 226 317 1,136,208 200,636 568,104 0.2149 509,734 0.2067 1730
L-STAR-10 279 328 1,321,708 208,072 660,854 0.1989 595,182 0.1905 1964

L-TREE-1 275 331 1,773,488 230,454 886,744 0.2214 677,688 0.2137 4165
L-TREE-2 223 276 1,309,656 171,442 654,828 0.2047 568,314 0.1998 1239
L-TREE-3 244 295 1,331,460 191,154 665,730 0.2151 518,782 0.2029 2519
L-TREE-4 225 281 1,350,248 176,960 675,124 0.2174 572,128 0.2137 1407
L-TREE-5 285 344 1,696,228 222,454 848,114 0.1958 749,256 0.1912 4241
L-TREE-6 250 271 1,274,724 165,398 637,362 0.2144 587,284 0.2075 841
L-TREE-7 298 332 1,472,300 202,148 736,150 0.2353 564,632 0.2167 4434
L-TREE-8 235 302 1,421,340 180,168 710,670 0.2273 532,228 0.2152 4060
L-TREE-9 208 272 1,470,648 181,506 735,324 0.2092 648,244 0.2038 1565
L-TREE-10 207 225 980,432 138,004 490,216 0.2291 402,364 0.2065 896

The computation time expended on each instance is listed, in seconds, in the column labeled “Time.” A lower bound value for each instance is shown in the
column labeled “LB.”

80 NETWORKS—2005

expressed in this article are those of the authors and do not
necessarily reflect the views of the South African National
Research Foundation.

REFERENCES

[1] R.D. Angel, W.L. Caulde, R. Noonan, and A. Whinston,
Computer-assisted school bus scheduling, Manag Sci B18
(1972), 279–288.

[2] M.O. Ball, T.L. Magnanti, C.L. Monma, and G.L. Nemhauser
(Editors), Network routing, North-Holland, Amsterdam,
1995.

[3] E.L. Beltrami and L.D. Bodin, Networks and vehicle routing
for municipal waste collection, Networks 4 (1974), 65–94.

[4] B. Bennett and D. Gazis, School bus routing by computer,
Transport Res 6 (1972), 317.

[5] L.D. Bodin and O. Berman, Routing and scheduling of school
buses by computer, Transport Sci 13 (1979), 113–129.

[6] L.D. Bodin, G. Fagin, R. Welebny, and J. Greenberg, The
design of a computerized sanitation vehicle routing and
scheduling system for the town of Oyster Bay, New York,
Comput Oper Res 16 (1989), 45–54.

[7] L.D. Bodin and S.J. Kursh, A detailed description of a
computer system for the routing and scheduling of street
sweepers, Comput Oper Res 6 (1979), 181–198.

[8] J. Braca, J. Bramel, B. Posner, and D. Simchi-Levi, A com-
puterized approach to the New York City school bus routing
project, Working paper, Columbia University, New York,
1993.

[9] G.A. Croes, A method for solving traveling salesmen prob-
lems, Oper Res 6 (1958), 791–812.

[10] J. Desrosiers, J.A. Ferland, J. Rousseau, G. Lapalme, and L.
Chapleau, TRANSCOL: A multi-period school bus routing
and scheduling system, TIMS Stud Manage Sci 22 (1986),
47–71.

[11] E.W. Dijkstra, A note on two problems in connection with
graphs, Num Math 1 (1959), 267–271.

[12] M. Dror (Editor), Arc routing: Theory, solutions and appli-
cations, Kluwer Academic Publishers, Dordrecht, 2000.

[13] J. Edmonds and E.L. Johnson, Matching, Euler tours and the
chinese postman problem, Math Program, 5 (1973), 88–124.

[14] R.W. Eglese, Routing winter gritting vehicles, Discrete App
Math 48 (1994), 231–244.

[15] R.W. Eglese and H. Murdock, Routing road sweepers in a
rural area, Oper Res Soc, 42 (1991), 281–288.

[16] H.A. Eiselt, M. Gendreau, and G. Laporte, Arc routing prob-
lems, part I: The Chinese postman problem, Oper Res 43
(1995), 231–242.

[17] H.A. Eiselt, M. Gendreau, and G. Laporte, Arc routing prob-
lems, part II: The rural postman problem, Oper Res 43 (1995),
399–414.

[18] M.M. Flood, The traveling–salesman problem, Oper Res 4
(1956), 61–75.

[19] R.W. Floyd, Algorithm 97: Shortest path, Commun ACM 5,
(1962), 345.

[20] G.N. Frederickson, Approximation algorithms for some
routing problems, J Assoc Comput Machinery 26 (1979),
538–554.

[21] L.F. Gelders and D.G. Cattrysse, Public waste collection: A
case study, Belgian J Oper Res Stat Comput Sci 31 (1991),
3–15.

[22] G. Ghiani and G. Improta, Optimizing laser–plotter beam
movement, Technical Report, Università di Napoli “Federico
II,” Napoli, Italy.

[23] M. Gondran and M. Minoux, Graphs and algorithms, Wiley–
Interscience, 1984.

[24] M. Grötschel, M. Jünger, and G. Reinelt, Optimal control of
plotting and drilling machines: A case study, Oper Res 35
(1991), 61–84.

[25] G.W. Groves, Scheduling evenly spaced routes in networks,
PhD dissertation, University of Stellenbosch, South Africa,
2004.

[26] G.W. Groves, J. le Roux, and J.H. van Vuuren, Network
routing and scheduling, Paper presented at the International
Conference on Operations Research in Development, Kruger
National Park, 2001.

[27] G.W. Groves and J.H. van Vuuren, Efficient heuristics for the
rural postman problem, ORiON 21(1) (2005), 33–51.

[28] M. Guan, Graphic programming using odd and even cycles,
Chin Math 1 (1962), 237–277.

[29] P. Lacomme, C. Prins, and W. Ramdane–Chérif, Fast algo-
rithms for general arc routing problems, Paper presented
at the Sixteenth Triennial Conference of the International
Federation of Operations Research Societies, Edinburgh,
2002.

[30] J le Roux, Scheduled multiple traversal postman problem
(SMTPP), [online], [cited 2004, April 29], Available from:
http://jleroux.navors.net/repositories/
smtpp.htm.

[31] J.K. Lenstra and A.H.G. Rinnooy Kan, On general routing
problems, Networks 6 (1976), 273–280.

[32] L. Levy and L.D. Bodin, “Scheduling the postal carriers for
the United States Postal Service: An application of arc par-
tioning and routing.” In Vehicle routing: Methods and stud-
ies, B.L. Golden and A.A. Assad (Editors), North-Holland,
Amsterdam, 1988, 359–394.

[33] K. Mehlhorn and S. Näher, LEDA: A platform for combina-
torial and geometric computing, Cambridge University Press,
Cambridge, 1999.

[34] H.M. Markowitz, Portfolio selection, J Finance 7 (1952),
77—91.

[35] H.M. Markowitz, Portfolio selection — Efficient diversifica-
tion of investments, John Wiley and Sons Inc., New York,
(1959).

[36] W. Ramdane–Chérif, Problèmes de tournées sur arcs, PhD
Dissertation, University of Troyes, France, 2002 (in French).

[37] S. Roy and J. Rousseau, The capacitated Canadian postman
problem, INFOR 27 (1989), 58–73.

[38] H. Stern and M. Dror, Routing electric meter readers, Comput
Oper Res 6 (1979), 209–223.

[39] J.H. van Vuuren Scheduled multiple traversal postman
problem (SMTPP), [online], [cited 2004, April 29],
Available from: http://dip.sun.ac.za/∼vuuren/
repositories/smtpp.htm.

[40] J. Wunderlich, M. Collette, L. Levy, and L.D. Bodin, Schedul-
ing meter readers for southern California gas company,
Interfaces 22 (1992), 22–30.

NETWORKS—2005 81

