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Abstract

In this report we consider the problem of enumerating self-orthogonal Latin squares (SOLS) of small
orders. We present enumeration tables of unequal SOLS, idempotent SOLS, isomorphism classes of SOLS
and isotopy classes of SOLS. The isotopy classes are enumerated by an (almost) exhaustive computerised
tree search which generates a representative from each isotopy class, whereafter the autotopism groups of
these representatives are used together with results from abstract algebra in order to enumerate unequal
SOLS, idempotent SOLS and isomorphism classes of SOLS. Finally, the results are validated by using
an alternative computerised search-tree method for all four classes of SOLS.
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1 Introduction

During the time the work presented in this report was done, we were unaware of a publication by Graham
and Roberts [8] concerning the enumeration of self-orthogonal Latin squares (SOLS) of orders 1 ≤ n ≤ 9.
We only became aware of the paper after we have completed the writing of this report. Although most of
our results were found in the Graham and Roberts paper, the results were obtained independently and by
utilising different methods and validation techniques. A section of this report does, however, contain new
results, and this section have been written up and submitted as a research paper [4]. The results obtained
in this report verifies the correctness of the results found by Graham and Roberts, as explained in [4]. It
should also be noted that the classes of SOLS defined in this report borrows their names from the Latin
square literature (names such as isomorphism and isotopism), but for the purpose of classifying SOLS they
are defined differently for SOLS than for Latin squares in general. Since we never refer to these classes of
Latin squares in general, there should be no confusion as to the definitions of these classes. In [4], however,
different names are given to these classes in order to avoid ambiguity.

Given a set of n distinct symbols, a Latin square of order n is an n×n array containing each symbol exactly
once in every row and every column. In this paper we denote the entry in row i and column j of a Latin
square L by L(i, j) and take the n symbols from the set Zn = {0, . . . , n− 1}. We also use Zn as index set
for the rows and columns of a Latin square. The transpose of a Latin square L, denoted by LT , is a Latin
square for which LT (i, j) = L(j, i). Two Latin squares L and L′ are said to be orthogonal if each ordered
pair (L(i, j),L′(i, j)) is unique among all such pairs for all i and j. If a Latin square L is orthogonal to its
transpose, then L is said to be a self-orthogonal Latin square (SOLS). The existence of a SOLS is guaranteed
for every order n ∈ N, except for n 6= 2, 3, 6 [3]. For orders 2 and 3 this fact is easily verifiable by exhaustive
enumeration, and it is well known that there exists no pair of mutually orthogonal Latin squares (MOLS)
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of order 6 [20]. Notable existence and construction results for SOLS appear in Mendelsohn [16], Hedayat
[9, 10] and Brayton et al. [3].

The purpose of this report is to count the number of different types of SOLS with the aid of a computer
and to present the results in tabular form. More specifically, we count the number of unequal SOLS, the
number of idempotent SOLS, the number of isomorphism classes of SOLS and the number of isotopy classes
of SOLS of orders 4 ≤ n ≤ 9. In Section 2 our general approach towards the enumeration of SOLS is
discussed in some detail, followed by the enumeration of the isotopy and isomorphism classes in Sections 3
and 4 respectively, and the enumeration of unequal and idempotent SOLS in Section 5. Finally the results
are reported in tabular form in Section 6, together with the description of a number of methods used to
validate those numerical results. The paper closes with a summary of the work presented and possibilities
for future work in Section 7.

2 Our general approach towards enumerating SOLS

We employ an exhaustive depth-first search tree approach with backtracking to enumerate SOLS, enabling
us to build up a repository of SOLS in addition to enumerating them. We incorporate various pruning rules
in order to limit the size of the tree and hence render the approach tractable.

A universal in a Latin square L is a list of n entries taken from L, all containing the same element. The
enumeration of SOLS is performed by branching on the inclusion of all possible universals of a specific
symbol, one at a time, within a given partially completed square, provided that the inclusion of a universal
does not destroy the property of self-orthogonality. This process is repeated on every level of the tree for
another symbol until either a completed SOLS is found or the inclusion of no further universal is possible.

To maintain self-orthogonality a list of all ordered pairs of symbols is kept, adding the pair (L(i, j),LT (i, j))
to the list once the entry L(i, j) assumes a value during the search process, while avoiding the inclusion of
universals which result in listing an ordered pair twice. A transversal in a Latin square L is a list of n entries
taken from L such that no two entries appear in the same row or column of L and no two entries contain the
same symbol. Another way of maintaining self-orthogonality is to note that each universal in L corresponds
to a transversal in LT . When an attempt is thus made to include a universal in the square a test may be
performed in LT to ensure that the corresponding elements form at least a partial transversal.

For clarity the pseudocode for an implementation of the method described above, using recursion, is given
in Algorithm 1. All enumeration methods described in this paper were implemented in Wolfram’s Mathe-

matica 6.0 [21] on an Intel(R) Core(TM) 2 Duo processor with 3.25 GB of RAM, except where otherwise
stated, and the trivial cases of SOLS of orders n = 2, 3 are omitted. All computing times are reported in the
format dd:hh:mm:ss.x where dd represents the number of days, hh the number of hours, mm the number
of minutes, ss the number of seconds and x the number of tenths of a second.

Algorithm 1 Recursion

Input: A partially completed SOLS S of order n, a set S of completed SOLS and a current element e.
Output: The set S with addition of all possible completions of S to SOLS of order n.

1: U ← the set of all possible universals of element e.
2: if U = ∅ and S is a SOLS then

3: S← S ∪ {S}.
4: else

5: for all ui ∈ U do

6: S′ ← ui inserted into corresponding entries in S.
7: S← Recursion(S′,S, e+ 1)
8: end for

9: end if

10: Return S
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3 Enumeration of the isotopy classes

Two SOLS L and L′ are isotopic if two permutations performed on L or LT , one on the rows and columns,
and one on the symbol set, results in L′. An isotopism is an element of the group Sn × Sn × S2 acting
on a SOLS, where Sn is the symmetric group of order n. We denote an isotopism by p = (pr, ps, pt),
where pr ∈ Sn is the permutation applied to the rows and columns, ps ∈ Sn is the permutation applied to
the symbol set and pt ∈ S2 permutes the roles of the rows and columns of L (i.e. it incorporates matrix
transposition). Two different approaches to the enumeration of the isotopy classes were implemented and
both utilise the search-tree approach described in Section 2. The first approach completes a set of partially
completed SOLS in such a way that the generation of a SOLS from each isotopy class is guaranteed. This
method requires a certain degree of isotopy testing on the final set of generated SOLS. The second approach
completes an initially empty array by iteratively inserting universals for the symbols 0, 1, . . . , n − 1 while
ensuring that after each universal is inserted the resulting partially completed SOLS cannot be transformed
via an isotopism into a lexicographically smaller partially completed SOLS, a method generally referred to
as orderly generation [7, 14, 18]. This method therefore ensures that a single class-representative from each
isotopy class is generated, and no isotopy testing is required.

3.1 Enumeration based on the notion of a skeleton

The diagonal of a SOLS is necessarily a transversal,1 and the diagonal and any row of a SOLS share a
common element, called the root of the row. Upon the exclusion of the root L(j, j), the diagonal and row j
form the permutation

(

L(0, 0) L(1, 1) . . . L(j − 1, j − 1) L(j + 1, j + 1) . . . L(n− 1, n− 1)
L(j, 0) L(j, 1) . . . L(j, j − 1) L(j, j + 1) . . . L(j, n− 1)

)

whose cycle structure2 is called the diagonal cycle structure of row j and is denoted by δ(L, j). The diagonal
cycle structure for column j is defined similarly and is denoted by δ(LT , j). For example, the diagonal cycle
structures δ(S, i) = x3

2 and δ(ST , i) = x2
3 for i = 0, . . . , 6, result for the SOLS

S7 =

2

6

6

6

6

6

6

6

4

0 2 1 4 3 6 5
3 1 6 0 5 4 2
4 5 2 6 0 1 3
5 6 4 3 2 0 1
6 3 5 1 4 2 0
1 0 3 2 6 5 4
2 4 0 5 1 3 6

3

7

7

7

7

7

7

7

5

of order 7. Note that the diagonal cycle structure of any row or column of a SOLS is invariant under
an isotopism. The cycle structure representative of a diagonal cycle structure δ(L, j) is the lexicograph-
ically smallest permutation that assumes δ(L, j) as its cycle structure. For instance, the cycle structure
representative of x2x4 is

(

1 2 3 4 5 6
2 1 4 5 6 3

)

.

A SOLS L is idempotent if L(i, i) = i for all i ∈ Zn. Our first enumeration approach for non-isotopic SOLS
is based on the notion of a SOLS skeleton. An n × n skeleton is a partially completed SOLS of order n in
which the first row is a cycle structure representative, its diagonal is a transversal in natural order and the
only other non-empty entries occur in the first column, which is complete. Since a skeleton is a partially
completed SOLS, its first row and column are both derangements with respect to the diagonal, and the

1Since each entry on the diagonal of a SOLS forms a pair (L(i, i), LT (i, i)) and since L(i, i) = LT (i, i), it follows that if any
symbol appears more than once on the diagonal, the property of orthogonality is destroyed. Therefore the main diagonal of a
SOLS is necessarily a transversal, implying that L(i, j) 6= L(j, i) for i 6= j.

2We used the standard notation x
α1

1
x

α2

2
. . . x

αn
n to denote the cycle structure of a permutation of order n, where αi denotes

the number of cycles of length i (see [1, p. 442]).
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first row and column are derangements with respect to one another3 and contain no 2-cycles with respect
to each other. These requirements are necessary so as to maintain the property of self-orthogonality when
completing a skeleton to form a SOLS. If a SOLS L contains a skeleton (i.e. if the first row, the first column
and the main diagonal of L form a skeleton), this skeleton is denoted by 〈L〉. Also, any SOLS that contains
a skeleton is idempotent. For instance, the skeleton of S7 is

〈S7〉 =

2

6

6

6

6

6

6

6

4

0 2 1 4 3 6 5
3 1
4 2
5 3
6 4
1 5
2 6

3

7

7

7

7

7

7

7

5

.

A SOLS L is induced by a skeleton K if it is isotopic to a SOLS L′ for which 〈L′〉 = K. If it may be shown
that any SOLS is induced by at least one skeleton, then an exhaustive list of skeletons may be presented as
starting conditions to the enumeration method described in Section 2.

Theorem 3.1 Every SOLS is induced by at least one skeleton.

Proof: The proof is constructive in the sense that we demonstrate an isotopism from any SOLS L to a
SOLS L′ such that L′ contains a skeleton. The first step is to permute all the rows and columns of a SOLS
L except the first row and column, such that each cycle in the diagonal cycle structure of the first row has
the form

(

p1 p2 . . . pk−1 pk

p2 p3 . . . pk p1

)

,

and that the cycles occur in order of non-decreasing length. Hence the first row has the form of a cycle
structure representative. If the symbols are renamed such that the diagonal is in natural order, the first row
is a cycle structure representative, and the resulting SOLS contains a skeleton. �

A cycle structure a = xα1

1 xα2

2 . . . xαn

n is lexicographically smaller than a cycle structure b = xβ1

1 xβ2

2 . . . xβn

n ,
denoted by a ≺ b, if αi > βi for some i and αj = βj for all 1 ≤ j < i. Our approach is to construct a list
of all n× n skeletons in increasing lexicographic order according to the diagonal cycle structure of the first
row. However, not all of these skeletons need be considered, since some will be incapable of producing new
SOLS when used as a starting point for the enumeration method described in Section 2.

Consider a permutation on the row, column and diagonal of a skeletonK, which is equivalent to a permutation
on the rows and columns of a SOLS with skeleton K. In order for the resulting row, column and diagonal
to form a skeleton, an appropriate change in symbols has to be performed in order for the diagonal to be in
natural order. If this change in symbols causes the row to form a cycle structure representative, then the
resulting skeleton K′ is isotopic to K. If this change in symbols causes the column to form a cycle structure
representative, then the row and column may be swapped and the resulting skeleton K′ is again isotopic to
K. This implies that a SOLS with skeleton K is isotopic to at least one SOLS with skeleton K′. Thus only
non-isotopic skeletons are considered, and this is done by exhaustively considering all isotopes of a skeleton,
grouping them together in an isotopism class and repeating the process for a skeleton not yet assigned to a
class. One skeleton from each class may then be selected as a starting point for the enumeration method of
Section 2. For illustrative purposes all non-isotopic skeletons of orders n = 4, 5 and 6 are given in Table 3.1.
The non-isotopic skeletons of orders n = 7, 8 and 9 may be found in [12].

A small section of the search tree for n = 7 is shown in Figure 3.1. It shows three branches for three different
universals of the element 4 (after universals for the elements 1, 2 and 3 have already been inserted), how the
insertion of two of them destroy the property of self-orthogonality (as underlined) and how one is eventually
completed to a SOLS. For this latter branch there is, after the insertion of the universal for the element 4,

3The first row and column are derangements with respect to one another if they have no fixed point other than the element
they have in common when viewed as a permutation.
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2

6

6

4

0 2 3 1
3 1
1 2
2 3

3

7

7

5

n = 4

2

6

6

6

4

0 2 1 4 3
3 1
4 2
2 3
1 4

3

7

7

7

5

n = 5

2

6

6

6

6

6

4

0 2 1 4 5 3
3 1
4 2
5 3
2 4
1 5

3

7

7

7

7

7

5

2

6

6

6

6

6

4

0 2 3 4 5 1
3 1
1 2
5 3
2 4
4 5

3

7

7

7

7

7

5

2

6

6

6

6

6

4

0 2 3 4 5 1
3 1
4 2
5 3
1 4
2 5

3

7

7

7

7

7

5

2

6

6

6

6

6

4

0 2 3 4 5 1
5 1
1 2
2 3
3 4
4 5

3

7

7

7

7

7

5

n = 6

Table 3.1: All non-isotopic skeletons of orders n = 4, 5 and 6.

only one possible universal for the element 5 and similarly for the element 6. Note that the universals are
inserted in the order 1, 2, . . . , n− 1, while the universal for the element 0 is uniquely defined once all other
universals are inserted. Since the only appearance of the element 0 in a skeleton is in the top-left corner,
the element 0 initially has, above all other elements, the largest number of possible universals, and is thus
not inserted until the very end.
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Figure 3.1: A small section of the search tree for n = 7.

Theorem 3.1 guarantees that no SOLS are omitted during the search, but it does not guarantee that the
SOLS eventually enumerated will all be non-isotopic (in pairs). Also, if two skeletons are non-isotopic it
does not necessarily mean the SOLS generated from them are non-isotopic. An isotopy test therefore has to
be performed on the set of enumerated SOLS so as to rid the set of redundant SOLS.

An efficient method for discarding a few redundant SOLS stems from the realisation that if all skeletons for
which the first row has the cycle structure x2x4 have been completed to SOLS, any SOLS L found at a later
stage for which δ(L, j) = x2x4 or δ(LT , j) = x2x4 for any j is isotopic to some SOLS already enumerated.
This implies that if, for any enumerated SOLS L, δ(L, j) ≺ δ(L, 0) or δ(LT , j) ≺ δ(L, 0) for any j, L may
be discarded from the set. The above-mentioned method is useful, but it still does not guarantee that all
SOLS in the remaining set are non-isotopic.

Consider two idempotent SOLS L and L′ for which we want to test for an isotopism. Since both are
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idempotent, any change of symbols in L must be followed by a unique permutation on the rows and columns
of L in order for the resulting square to be idempotent. Hence an appropriate isotopy test consists of only
finding the specific change of symbols in L which will result in L′. Consider a permutation on the symbol
set of L such that a is replaced by α and b by β, and suppose a, b, c and d form the subsquare in L shown
in Figure 3.2 (a), where a and b lie on the diagonal of L. Since L is a SOLS it necessarily holds that a 6= b
and c 6= d. Similarly, let α, β, γ and δ form the subsquare in L′ shown in Figure 3.2 (b), where α and β lie
on the diagonal of L′. It is easy to see that these subsquares remain intact during any isotopism from L to
L′, and thus that if a is replaced by α and b by β, then c must be replaced by γ and d by δ. If we initially
apply a change in name on two symbols, it will immediately imply a change in name on two more symbols,
eventually causing a chain reaction resulting in either a partially completed permutation or a contradiction.
This process may be repeated until either a complete permutation on the symbol set is found, thus implying
an isotopism from L to L′, or until all possibilities result in contradictions, implying that L and L′ are
non-isotopic.

a . . . c
...

...
d . . . b

(a)

α . . . γ
...

...
δ . . . β

(b)

Figure 3.2: Two subsquares of a SOLS.

We denote the number of non-isotopic skeletons of order n by κ(n) and the number of SOLS of order n
generated from the κ(n) skeletons by Γ(n). The number of isotopy classes of SOLS of order n, found by
applying the methods described above to the SOLS generated from the skeletons, is denoted by Ψ(n). The
results for the enumeration of skeletons and the isotopy classes are given in Table 3.2 together with the
required computing times. The depth-first tree search used to enumerate Γ(9) was achieved by means of 15
computers running in parallel. Two computers were as previously mentioned in Section 2, two were Intel(R)
Pentium(R) D processors with 1.024 GB of RAM each, one was an Intel(R) Pentium IV processor with 512
MB of RAM and the remainder were Intel(R) Core(TM) 2 Duo processors with 1.024 GB of RAM each.

Skeleton generation Depth-first Tree Search Final isotopy testing

n κ(n) Time Γ(n) Time Ψ(n) Time

4 1 0.0 1 0.0 1 —
5 1 0.0 1 0.0 1 —
6 4 0.1 0 0.1 0 —
7 20 0.8 8 3.5 4 1.3
8 78 14.6 12 9:25.2 4 2.2
9 595 11:57.7 1561 19:20:11:00.5 175 2:55:35.1

Table 3.2: The number, Ψ(n), of isotopy classes of SOLS of order n together with the required computing times.

A complete set of all Ψ(n) isotopy class representatives of SOLS of order n appear in the appendix for all
4 ≤ n ≤ 9.

3.2 An alternative enumeration approach

Our second approach is to initialise with an empty array and use the search-tree approach described in Section
2 together with a number of additional pruning rules in order to generate a single class representative from
each isotopy class.

The (3, 2, 1)-conjugate of a SOLS L for which L(i, j) = k, denoted by L(3,2,1), is a Latin square for which
L(3,2,1)(k, j) = i. Note that if L is idempotent, then so is L(3,2,1). Given a set of n distinct symbols, a k×n
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row-scattered Latin rectangle (RSLR) for k ≤ n is a Latin square of order n with n− k of its rows removed,
in other words a Latin squares with n − k empty rows and k complete rows. A RSLR R is idempotent
if R(i, i) = i for every row i that is not empty. The (1, 3, 2)-conjugate of R, denoted by R(1,3,2), is the
RSLR resulting from the replacement of each row by its inverse permutation. Two RSLRs R and R′ are
pseudo-isotopic if two permutations performed on R or R(1,3,2), one on the columns and symbol set and one
on the rows, results in R′. It may be noted that a permutation applied to the rows of an RSLR permutes
the compelete rows as well as the empty rows.

Given a k×n RSLR R and a k×n RSLR R′, let ℓ ≤ k be the smallest index for which row ℓ of either R or
R′ is empty. Then R is lexicographically smaller than R′ if the rows indexed by 0, 1, . . . , i−1 for some index
i < ℓ are equal for both R and R′, and row i in R is lexicographically smaller (in a permutation sense) than
row i in R′. If all rows indexed by i < ℓ are equal, then the lexicographic order of R and R′ is undecided.
The lexicographically smallest SOLS in a single isotopy class is defined to be the isotopy class leader of that
class.

It may be noted that each universal in a SOLS L corresponds to the row in L(3,2,1) indexed by its symbol
and that an isotopism performed on L corresponds to a pseudo-isotopism performed on L(3,2,1). Also, after
universals for the symbols 0, 1, . . . , k−1 have been inserted into an empty n×n array, the (3, 2, 1)-conjugate
of the partially completed SOLS is a k × n RSLR. If there exists no pseudo-isotopism which transforms
this RSLR into a lexicographically smaller RSLR, we henceforth refer to such a RSLR as a candidate with
respect to SOLS isotopy class leadership. Our approach is to branch on a partially completed SOLS only if
the (3, 2, 1)-conjugate is a candidate, and in this way a single representative from each isotopy class of SOLS
is generated.

Consider any non-empty row of a k × n RSLR R as a permutation

r =

(

0

r(0)

1

r(1)
. . .

n− 1

r(n− 1)

)

,

where r(i) represents the i-th entry in the row, and let

p =

(

0

p(0)

1

p(1)
. . .

n− 1

p(n− 1)

)

.

It is easy to see that if p is applied to the columns of R, then r is replaced by r ◦ p−1. Similarly, if p is
applied to the symbol set of R, then r is replaced by p ◦ r. Hence, if p is applied to the columns and the
symbol set of R, then r is replaced by p ◦ r ◦ p−1, known as a conjugate permutation of r, which, according
to [2, p. 80, Lemma 3.13], necessarily has the same cycle structure as r. In fact, for any two permutations p1

and p2 with the same cycle structure there always exists a permutation q such that q ◦ p1 ◦ q−1 = p2. Since a
permutation and its inverse have the same cycle structure, the non-empty rows of R(1,3,2) and R also exhibit
the same cycle structure. Hence the cycle structures of the non-empty rows of a RSLR are invariant under
a pseudo-isotopism.

Since the diagonal of a SOLS L is a transversal and L(i, j) 6= L(j, i), the cycle structure of the rows of L(3,2,1)

must contain exactly one fixed point and no two-cycles. Furthermore, it is easy to see that the first row of
a candidate is a cycle structure representative and that the cycle structure of each row is lexicographically
larger than that of the first row. Hence, for each cycle structure there is only one universal for the first
element and at any point during the tree search described in Section 2, if a row is added to a candidate such
that the cycle structure of that row is lexicographically smaller than the cycle structure of the first row, the
corresponding partially completed SOLS may be discarded.

Let the first row of an RSLR R be a cycle structure representative and let the cycle structure of each row
be lexicographically larger than that of the first row. Suppose we wish to test whether an RSLR R is a
candidate. We know at least that if there exists a lexicographically smaller RSLR, it has the same first row as
R, and we want to consider pseudo-isotopisms of R for which the first row remains intact. Let r1, r2, . . . , rℓ
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be the non-empty rows in R with the same cycle structure as the first row. A pseudo-isotopism of R for
which the first row remains intact thus either maps the first row to itself or maps one of these rows to the
first row4. Therefore, these are the only pseudo-isotopisms we have to consider, and if any of these map R

to a lexicographically smaller RSLR, then R is not a candidate.

To find the permutations that map a row r1 to another row r2 with the same cycle structure, we consider
only those permutations that map each cycle of r1 to a corresponding cycle of r2. If there are k cycles of
equal length in both r1 and r2, there are k! possible mappings of these cycles in r1 to those in r2. If the
cycle (x1, x2, . . . , xm) is to be mapped to the cycle (y1, y2, . . . , ym), we may choose to map x1 to any yi and
the remainder of the mapping will be defined uniquely. If there are ai cycles of length i for any i ≤ n where
n is the order of the permutations, then there are

∏n

i=1 ai!i
ai mappings from r1 to r2.

The results for the enumeration of the isotopy classes via this approach are given in Table 3.3 together with
the required computing times.

n Ψ(n) Time

4 1 0.0
5 1 0.0
6 0 0.0
7 4 1.7
8 4 72.5
9 175 2:19:33:07.4

Table 3.3: The number, Ψ(n), of isotopy classes of SOLS of order 4 ≤ n ≤ 9 together with the required computing
times.

4 Enumeration of the isomorphism classes

Two SOLS L and L′ are isomorphic if a single permutation performed on the rows, columns and symbol
set of L or LT results in L′. An isomorphism is an element of Sn × S2 acting on a SOLS and may be
denoted by p = (pr, pt), where pr ∈ Sn is the permutation applied to the rows, columns and symbol set, and
pt ∈ S2 incorporates matrix transposition. For the purpose of enumerating isomorphism classes we follow
the approach of McKay et al. [15].

A permutation p of order n is of type (a1, a2, . . . , an) if it has ai cycles of length i for 1 ≤ i ≤ n. As mentioned
in Section 3, if two permutations p1 and p2 are of the same type (a1, a2, . . . , an), then they are conjugates
and there exist

∏n

i=1 ai!i
ai permutations q such that q ◦ p1 ◦ q−1 = p2.

An autotopism is an isotopism that maps a SOLS L to itself. Denote by A(L) the set of all autotopisms admit-
ted by L. For any two isotopisms p = (pr, ps, pt) and q = (qr, qs, qt) the notation pq = (pr◦ qr, ps◦ qs, pt◦ qt)
is used to denote the action of first applying q and then p. Furthermore, p−1 = (p−1

r , p−1
s , p−1

t ). Let I(n)
denote a set of class representatives, one from each SOLS isotopy class of order n, and let A′(L) be the set
of autotopisms p of L for which pr and ps are both of the same type. For an isotopism p in which pr and
ps are both of type (a1, a2, . . . , an), define the function ψ(p) =

∏n

i=1 ai!i
ai .

All the isomorphism classes in a single isotopy class are orbits of the group Sn × S2 and we may find the
number of orbits by the Cauchy-Frobenius lemma [11] (sometimes (mistakenly) referred to as Burnside’s
lemma [17]) which states that, if F (p) is the number of SOLS (in a single isotopy class) fixed by p ∈ Sn×S2,
then the number of isomorphism classes of SOLS in that class is

∑

p∈Sn×S2

F (p)

|Sn × S2|
.

4Since we map a row to the first row by a permutation on the columns and the symbol set, the permutation on the rows is
defined (uniquely) in order to ensure that the resulting RSLR is again idempotent.
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In other words, the number of isomorphism classes in a single isotopy class of SOLS is the total number
of distinct automorphisms over all SOLS in the class divided by the total number of possible isomorphims.
Here two automorphisms are distinct if they are either different permutations or if they are automorphisms
of two different SOLS.

Theorem 4.1 If F (p) is the number of SOLS in the isotopy class of a SOLS L fixed by p ∈ Sn× S2, then

∑

p∈Sn×S2

F (p)

|Sn × S2|
=

∑

α∈A′(L)

ψ(α)

|A(L)|
.

Proof: Let p be an isotopism and let α ∈ A(L). Then the isotopism pαp−1 is an autotopism of some SOLS
in the isotopy class of L, and any autotopism of a SOLS in the isotopy class of L may be written in this
form for some isotopism p and some α ∈ A(L).

For pαp−1 to be an automorphism it must hold that pr ◦αr ◦p−1
r = ps ◦αs ◦p−1

s , and hence αr and αs must
be of the same type. The total number of isotopisms p for which pαp−1 is an automorphism is 2n!ψ(α).
This number may be found by noting that pr may be chosen in n! ways, ps may be chosen in

∏n
i=1 ai!i

ai

ways, given that αr and αs are of type (a1, a2, . . . , an), and finally pt may be chosen in two ways. We thus
count

∑

α∈A′(L) 2n!ψ(α) automorphisms over all SOLS in the isotopy class of L, although we may have
counted each automorphism more than once.

It is therefore necessary to find the number of equivalence classes of pairs (p,α), where p is an isotopism for
which pαp−1 is an automorphism and α ∈ A′(L). Here two pairs (p,α) and (q,β) are equivalent, denoted
by (p,α) ∼ (q,β), if and only if pαp−1 = qβq−1 and q and p both map L to the same SOLS. If we let
γ ∈ A(L), q = pγ and β = γ−1αγ, then pαp−1 = qβq−1. Furthermore, β ∈ A′(L) and q and p both map
L to the same SOLS. We may therefore find, for every γ ∈ A(L), a pair (q,β) such that (p,α) ∼ (q,β),
and these equivalence classes have cardinality at least |A(L)|.

Conversely, let pαp−1 = qβq−1 be automorphisms such that q and p both map L to the same SOLS and
α,β ∈ A′(L). Let γ = p−1q ∈ A(L). Thus pαp−1 = qβq−1 = pγβγ−1p−1 and β = γ−1αγ. We now have
the equivalence found above, and therefore the equivalence classes have size exactly |A(L)|.

The total number of distinct automorphisms over all SOLS in the isotopy class of L is therefore

∑

α∈A′(L)

2n!ψ(α)

|A(L)|
.

Since |Sn × S2| = 2n! the result follows. �

To find the number of isomorphism classes of SOLS of order n we sum over all the elements of I(n). The
number of isomorphism classes of SOLS of order n is therefore

∑

L∈I(n)

1

|A(L)|

∑

α∈A′(L)

ψ(α).

We use the isotopy class representatives generated by the method of Section 3 as the set I(n). The computer
program nauty [13] may be used to determine the autotopy groups of these SOLS. Since nauty takes only
graphs as input it is necessary to represent a SOLS L by a graph in such a way that the isomorphisms of
the graph corresponds to the isotopisms of L. Such a graph for each class of Latin squares is described by
McKay et al. [15] and we use a similar graph representation approach to find the isotopy class of SOLS.

For a SOLS L of order n, let G(L) be a vertex-coloured graph such that V (G) = {ri, ci, si, ℓij | i, j ∈Zn}∪{R,C}, where one colour is assigned to {ri, ci | i ∈ Zn}, another to {si | i ∈ Zn}, a third to {R,C} and
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a fourth colour to {ℓij | i, j ∈ Zn}. Furthermore, E(G) = {riℓij , cjℓij , skℓij | L(i, j) = k} ∪ {Rri, Cci, rici |
i ∈ Zn} and the isomorphisms of G(L) are colour-preserving. For illustrative purposes a part of G(L4) is
shown in Figure 4.1, where

L4 =

2

6

6

4

0 2 3 1
3 1 0 2
1 3 2 0
2 0 1 3

3

7

7

5

.

r0r1r3 r2

c3 c2 c1

ℓ23

s0

s1

s2

s3

c0 ℓ02ℓ00 ℓ01

ℓ10 ℓ11 ℓ12

ℓ03

ℓ13

ℓ20 ℓ21

ℓ30 ℓ31 ℓ32 ℓ33

R

C

ℓ22

Figure 4.1: A section of the graph G(L4) with some edges omitted. The isomorphisms of this graph corresponds to
the isotopisms of L4.

A SOLS L is label-isotopic to a SOLS L′ if a single permutation on the symbol set of L results in L′. As
validation of the correctness of the number of isomorphism classes enumerated via the method described
above we employ a second (less efficient) method to enumerate the isomorphism classes for small orders
(4 ≤ n ≤ 5). This is achieved by means of the following proposition.

Proposition 4.1 Any SOLS L is label-isotopic to at least one SOLS from each isomorphism class in the
isotopy class of L.

Proof: Let A be any isomorphism class in the isotopy class of L. If p = (p1, p2, t) is an isotopism from L

to a SOLS in A, then let p′ = (p−1
1 , p−1

1 , t−1) be an isomorphism from a SOLS in A to another SOLS in A.
The isotopism p′p is a label-isotopism from L to a SOLS in A. �

It follows by Proposition 4.1 that we may perform the n! label-isotopisms on a class representative from each
isotopy class and group the resulting SOLS into isomorphism classes via isomorphism testing. The test for
isomorphism can easily be derived from that of isotopism.

The results obtained via the enumeration of the isomorphism classes are given in Table 4.1 together with
the required computing times using the validation method of Proposition 4.1 for orders 4 ≤ n ≤ 5. The
computation of the autotopism groups via nauty was immediate for 4 ≤ n ≤ 8 and 0.92 seconds for n = 9.

5 Enumeration of unequal and idempotent SOLS

Two SOLS L and L′ are equal if L(i, j) = L′(i, j) for all i and j. We denote the number of unequal SOLS
of order n by Λ(n) and the number of idempotent SOLS of order n by Φ(n).
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n Υ(n) Time

4 5 0.1
5 11 1.1
6 0 —
7 1 986 —
8 52 060 —
9 34 564 884 —

Table 4.1: The number, Υ(n), of isomorphism classes of SOLS of order n together with the required computing
times.

Let T be a maximal set of pairwise isotopic SOLS of order n. Then T forms an orbit of the group S2
n×S2 and

it follows by a well-known property of group actions [1, 6, 11] (sometimes referred to as the orbit-stabiliser
theorem) that |T | = 2(n!)2/|A(L)|. Since we have a class representative from each isotopy class in the set
I(n), it follows that Λ(n) = 2(n!)2

∑

L∈I(n) 1/|A(L)|. It may be noted that Λ(n) = n!Φ(n) for any n ∈ N,

which is similar to the well-known result that the number of Latin squares of order n is n!(n− 1)! times the
number of reduced Latin squares5 of order n. Thus, Φ(n) = 2n!

∑

L∈I(n) 1/|A(L)|.

As validation of the enumeration results obtained by the method described above we generated all unequal
SOLS of order n and all idempotent SOLS of order n by the method described in Section 2. This was
achieved by starting with an empty n× n square and a partially completed n× n square with the elements
0, 1, . . . , n−1 on the diagonal in order to generate all unequal and idempotent SOLS of order n, respectively.

The enumeration results for Λ(n) and Φ(n) are shown in Table 5.1 together with the required computing
times for the depth-first tree search. Where times are omitted, we were not able to complete the enumeration
within an acceptable time-frame.

n Λ(n) Time Φ(n) Time

4 48 0.1 2 0.0
5 1 440 6.5 12 0.1
6 0 33:56.1 0 0.5
7 19 535 600 — 3 840 4:33.4
8 4 180 377 600 — 103 680 —
9 25 070769 561 600 — 69 088 320 —

Table 5.1: The number, Λ(n), of unequal SOLS of order n and the number, Φ(n), of idempotent SOLS of order n

together with the required computing times.

6 Validation of results

Our final result, the enumeration of different types of SOLS, is shown in Table 6.1 for orders 4 ≤ n ≤ 9. The
numbers tabulated here may also be found in [19], and the corresponding sequence reference numbers have
been provided.

As a validation of our algorithmic implementations we included the case n = 6 in our computations, verifying
empirically the known theoretical result that Λ(6) = Φ(6) = 0. We also verified computationally that
Λ(n) = n!Φ(n) for small orders.

A validation of the correctness of the values tabulated for Ψ(n) is the fact that all idempotent SOLS of
order n were enumerated by the autotopism classes of the Ψ(n) non-isotopic SOLS of order n. Not all of

5A Latin square is reduced if both its first row and first column are in natural order.
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n Λ(n) Φ(n) Υ(n) Ψ(n)

4 48 2 5 1
5 1 440 12 11 1
6 0 0 0 0
7 19 353 600 3 840 1 986 4
8 4 180 377 600 103 680 52 060 4
9 25 070 769 561 600 69 088 320 34 564 884 175

#A160368 #A160367 #A160366 #A160365.

Table 6.1: Enumeration of various classes of SOLS. Here Λ(n) denotes the number of unequal SOLS of order n, Φ(n)
the number of idempotent SOLS of order n, Υ(n) the number of isomorphism classes of SOLS of order n and Ψ(n)
the number of isotopy classes of SOLS of order n. The identification numbers allocated to the column sequences of
the table in Sloane’s Online Encyclopedia of Integer Sequences [19] are shown in the last row of the table.

the Φ(n) idempotent SOLS would have been enumerated if the value of Ψ(n) were too small. Similarly,
too large a value of idempotent SOLS would have been enumerated if the value of Ψ(n) were too large. A
final validation of the correctness of our numerical results for the isotopy classes is the fact that the two
approaches of Section 3, namely completing skeletons and generating class representatives, yielded the same
results.

As validation of the isomorphism class enumeration two approaches were again implemented, namely by
the autotopism groups of the isotopy class representatives and by Proposition 4.1, both yielding the same
results. Finally, validation of the correctness of the values tabulated for Λ(n) and Φ(n) is the fact that
both implementations of the method described in Section 2 yielded the same results for Λ(n) and Φ(n) as
enumerated by the autotopism classes of the Ψ(n) non-isotopic SOLS of order n.

7 Conclusion

In this paper we enumerated the number of unequal SOLS, the number of idempotent SOLS, the number of
isomorphism classes of SOLS and the number of isotopy classes of SOLS of orders 4 ≤ n ≤ 9 by a number of
different methods for each count, providing a means of validation towards the correctness of these numbers.
Furthermore, we were able to build up a repository of all unequal SOLS of orders 4 ≤ n ≤ 5, all idempotent
SOLS of orders 4 ≤ n ≤ 7 and class representatives from each of the isotopy classes of SOLS of orders
4 ≤ n ≤ 9, all of which are available online [12].

The first level of the search-tree for SOLS of order 10 has four nodes (utilizing the orderly generation
approach) while the second level has 3 825 nodes. In order to gain an understanding of the expected time
complexity associated with traversing this search tree, we fathomed 13 (0.34%) of the 3 825 nodes on the
second level of the tree. During this process we uncovered 494 non-isotopic SOLS of order 10 (these SOLS
are available in [12]). We recorded traversal times ranging between two days and twenty days per node from
which we estimate that the time required to traverse the entire tree may be between 20 years and 200 years.
Our method is therefore infeasible for order 10, even if a low-level programming language (such as C++

or C#) were to be used instead of Mathematica, unless a massively parallel approach is adopted. Further
pruning rules are required for early identification of branches of the search tree that will not result in any
new SOLS, thus thinning the tree considerably. The exploration of special properties of SOLS of order 10
may also be considered in order to render the search tractable. However, once we have a class representative
from each isotopy class of SOLS of a certain order n ≥ 10, the enumeration of the number of unequal SOLS,
idempotent SOLS and isomorphism classes will be neither difficult nor time-consuming.
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Appendix: Non-isotopic SOLS of orders 4 ≤ n ≤ 9

All non-isotopic SOLS of orders 4 ≤ n ≤ 9 are listed in this appendix. Below each SOLS the number of
idempotent SOLS isotopic to it is given in bold face. This value may be multiplied by n! to obtain the
cardinality of the corresponding isotopy class.

n = 4 n = 5 n = 7 n = 8

0231 02143 0214365 0214365 0214563 0234561 02145673 02145673 02345671 02345671
3102 31402 3160542 3160524 3105624 6105243 31670245 31702456 31460752 41607352
1320 43210 4526013 4526031 4621035 1420635 43257016 46257301 65207413 53270146
2013 24031 5643201 5643102 6053241 2653014 20736154 57630124 74136205 67431025
2 10324 6351420 6352410 2536410 3516402 65314702 75364210 27654130 76154203

12 1032654 2401653 1460352 4362150 76402531 13076542 13072546 14726530
2405136 1035246 5342106 5041326 17523460 20413765 50721364 20513764

240 1 680 1 680 240 54061327 64521037 46513027 35062417
80 640 10 080 11 520 1 440
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n = 9

021436587 021436587 021436587 021436587 021436587 021436587 021436587 021436587 021436587 021436587 021436587 021436587
318507264 318064725 316078245 316578420 317502864 315874260 310257846 318764250 315784062 310274856 316278405 318027456
472061835 472508361 452801763 482167305 482067135 432058716 452803761 472851306 472013856 472068135 452617830 432810765
207358146 280357416 260387154 570321864 576328041 578361024 576382014 560382741 587360421 586317240 580362741 564378012
180642753 107643852 105742836 605842731 658140723 607142835 763148205 706143825 760148235 758640321 768143052 750641823
746185320 764185203 738165402 748605213 764285310 786205143 148675320 187605432 238605714 207185463 204785316 287165340
853724601 835721640 874523610 837014652 835714602 843527601 805714632 854027613 854271603 835702614 837051624 875204631
635810472 653812074 683254071 154283076 140853276 150683472 284560173 635218074 146852370 164853072 645820173 603582174
564273018 546270138 547610328 263750148 203671458 264710358 637021458 243570168 603527148 643521708 173504268 146753208
181 440 90 720 90 720 362 880 181 440 362 880 725 760 725 760 725 760 725 760 725 760 725 760

021436587 021436587 021436587 021436587 021436587 021436587 021436587 021436785 021436785 021436785 021436785 021436785
316807425 318607254 318760425 318720465 316820754 316507842 314508762 318654207 310857246 315872046 314867520 317052846
582173064 572184036 562178034 562871034 582071463 542873016 562783014 452718036 472068351 432761850 402758361 462587103
170384256 180362745 180324756 180364752 178364205 204358761 206357841 285367140 548371062 564380127 560382147 578314062
765248310 763548120 705841362 705148326 705148326 785642130 783641250 507142863 687240513 607548231 678041253 603748251
208615743 207815463 273685140 237615840 237615840 160785324 140875326 763085412 136725804 178205364 243175806 284605317
834751602 845273601 834257601 874253601 840753612 837124605 857214603 874503621 854103627 843057612 837504612 845271630
453062871 436051872 456012873 456082173 463582071 658210473 638120475 136820574 263584170 280614573 185623074 136820574
647520138 654720318 647503218 643507218 654207138 473061258 475062138 640271358 705612438 756123408 756210438 750163428
181 440 90 720 181 440 181 440 181 440 181 440 181 440 725 760 725 760 725 760 725 760 725 760

021436785 021436785 021436785 021436785 021436785 021436785 021436785 021436785 021436785 021436785 021436785 021436785
314058267 318264057 315784206 315782406 315784206 315784026 317508462 314687052 317628504 316870524 318670254 314602857
402671853 432687510 432051867 432057861 432057861 432057861 462810357 482703516 462187350 472058163 532061847 562087314
578324106 574301862 587362041 587361042 587361042 587361240 586372041 540378261 548370162 567384201 174308526 157328046
683740521 685740231 608147352 608143257 608142357 608142357 758143206 756140823 785043216 758241036 685742310 685741203
237865410 703825146 870625134 846275130 876205134 876205134 134765820 168025437 134865027 283605417 867215403 806175432
850217634 857013624 143578620 173508624 143578620 143578602 870254613 837512640 870512643 835127640 240857631 478513620
146583072 260158473 264810573 264810573 264810573 264810573 203681574 205861374 653204871 140563872 406583172 243860571
765102348 146572308 756203418 750624318 750623418 750623418 645027138 673254108 206751438 604712358 753124068 730254168
725 760 725 760 725 760 725 760 725 760 725 760 725 760 725 760 725 760 725 760 725 760 362 880

021436785 021436785 021436785 021436785 021436785 021436785 021436785 021436785 021436785 021436785 021436785 021436785
316728450 315628407 317254806 316728054 315870246 318267504 316527804 316807542 316758042 316580427 315867024 318604257
502863147 572104863 502781364 572804316 572608134 532671840 532870416 542713860 572810463 542678130 542703861 542781036
164387502 148367250 185367240 154360827 157364802 160384257 104358267 264380157 247361850 207354861 270384156 286357401
675041823 786540321 763148052 785143260 708542361 756148032 785643021 657048321 608143527 670843512 608541237 765048312
837105264 237085146 278605413 207685143 263085417 407825316 467085132 708125436 834075216 863715204 867125403 470125863
458270631 804753612 854012637 840517632 840157623 845710623 853712640 835271604 183527604 158027643 453078612 807513624
283514076 653812074 640823571 638052471 684213570 683052471 648201573 180654273 450682371 485102376 184652370 134862570
740652318 460271538 436570128 463271508 436721058 274503168 270164358 473562018 765204138 734261058 736210548 653270148
725 760 362 880 725 760 725 760 725 760 725 760 725 760 725 760 725 760 725 760 725 760 725 760

021436785 021436785 021436785 021436785 021436785 021436785 021436785 021436785 021436785 021436785 021436785 021436785
315874206 318507264 318627540 314750862 316587024 310824567 314708526 315072864 314807526 315627840 316078452 316758402
572168034 502768341 562871304 582017436 532078461 582673140 582167340 562784130 562180437 532860417 502814367 572184063
206357841 246310857 605384217 647328510 687354102 765380214 760382451 746358201 740351862 740381256 740351826 758310246
783041562 875042136 786142053 876142053 875643210 673541802 638541207 653841027 657248013 867143502 857643201 807642531
834605127 184675023 147205836 738605124 740215836 138705426 203875164 478205316 836725140 186705324 178265034 463875120
457283610 457283610 834750621 150283647 153802647 847012653 875014632 804127653 283074651 258074631 235187640 184023657
168520473 630851472 453068172 205864371 468120573 406258371 146250873 180563472 108562374 604258173 684520173 230561874
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